A POINTWISE REGULARITY THEORY FOR THE 2-OBSTACLE PROBLEM

被引:26
作者
DALMASO, G
MOSCO, U
VIVALDI, MA
机构
[1] UNIV ROME LA SAPIENZA,I-00185 ROME,ITALY
[2] UNIV AQUILA,I-67100 AQUILA,ITALY
关键词
D O I
10.1007/BF02392733
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:57 / 107
页数:51
相关论文
共 23 条
[1]  
ADAMS DR, 1981, APPL MATH OPT, V8, P39
[2]   BROWNIAN-MOTION AND HARNACK INEQUALITY FOR SCHRODINGER-OPERATORS [J].
AIZENMAN, M ;
SIMON, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (02) :209-273
[3]  
[Anonymous], 1982, JBER DT MATH VEREIN
[4]  
BREZIS HR, 1968, B SOC MATH FR, V96, P153
[5]   POTENTIAL METHODS IN VARIATIONAL-INEQUALITIES [J].
CAFFARELLI, LA ;
KINDERLEHRER, D .
JOURNAL D ANALYSE MATHEMATIQUE, 1980, 37 :285-295
[6]   WIENER CRITERIA AND ENERGY DECAY FOR RELAXED DIRICHLET PROBLEMS [J].
DALMASO, G ;
MOSCO, U .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 95 (04) :345-387
[7]  
Dunford N., 1957, LINEAR OPERATORS
[8]   LEBESGUE SET OF A FUNCTION WHOSE DISTRIBUTION DERIVATIVES ARE P-TH POWER SUMMABLE [J].
FEDERER, H ;
ZIEMER, WP .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1972, 22 (02) :139-&
[9]  
FREHSE J, 1982, CR ACAD SCI I-MATH, V295, P571
[10]  
FREHSE J., 1984, RES NOTES MATH, V109, P225