CRYSTAL BASE AND Q-VERTEX OPERATORS

被引:32
作者
DATE, E [1 ]
JIMBO, M [1 ]
OKADO, M [1 ]
机构
[1] KYOTO UNIV,FAC SCI,DEPT MATH,KYOTO 606,JAPAN
关键词
D O I
10.1007/BF02100049
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The q-deformed vertex operators of Frenkel and Reshetikhin are studied in the framework of Kashiwara's crystal base theory. It is shown that the vertex operators preserve the crystal structure, and are naturally labeled by the global crystal base. As an application the one point functions are calculated for the associated elliptic RSOS models, following the scheme of Kang et al. developed for the trigonometric vertex models.
引用
收藏
页码:47 / 69
页数:23
相关论文
共 18 条
[1]  
Baxter R.J., 2007, EXACTLY SOLVED MODEL
[2]   ONE-DIMENSIONAL CONFIGURATION SUMS IN VERTEX MODELS AND AFFINE LIE-ALGEBRA CHARACTERS [J].
DATE, E ;
JIMBO, M ;
KUNIBA, A ;
MIWA, T ;
OKADO, M .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (01) :69-77
[3]   EXACTLY SOLVABLE SOS MODELS - LOCAL HEIGHT PROBABILITIES AND THETA-FUNCTION IDENTITIES [J].
DATE, E ;
JIMBO, M ;
KUNIBA, A ;
MIWA, T ;
OKADO, M .
NUCLEAR PHYSICS B, 1987, 290 (02) :231-273
[4]  
Date E., 1988, CONFORMAL FIELD THEO, V16, P17
[5]   QUANTUM AFFINE ALGEBRAS AND HOLONOMIC DIFFERENCE-EQUATIONS [J].
FRENKEL, IB ;
RESHETIKHIN, NY .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (01) :1-60
[6]   SOLVABLE LATTICE MODELS RELATED TO THE VECTOR REPRESENTATION OF CLASSICAL SIMPLE LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T ;
OKADO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 116 (03) :507-525
[7]   LOCAL STATE PROBABILITIES OF SOLVABLE LATTICE MODELS - AN AN(1)-1 FAMILY [J].
JIMBO, M ;
MIWA, T ;
OKADO, M .
NUCLEAR PHYSICS B, 1988, 300 (01) :74-108
[8]   THE AN(1) FACE MODELS [J].
JIMBO, M ;
KUNIBA, A ;
MIWA, T ;
OKADO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (04) :543-565
[9]   COMBINATORICS OF REPRESENTATIONS OF UQ[SL(N)] AT Q = 0 [J].
JIMBO, M ;
MISRA, KC ;
MIWA, T ;
OKADO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) :543-566
[10]  
Kac V.G., 1990, INFINITE DIMENSIONAL