AUTOMATIC LAG SELECTION IN COVARIANCE-MATRIX ESTIMATION

被引:1688
作者
NEWEY, WK [1 ]
WEST, KD [1 ]
机构
[1] UNIV WISCONSIN,MADISON,WI 53706
基金
美国国家科学基金会;
关键词
D O I
10.2307/2297912
中图分类号
F [经济];
学科分类号
02 ;
摘要
We propose a nonparametric method for automatically selecting the number of autocovariances to use in computing a heteroskedasticity and autocorrelation consistent covariance matrix. For a given kernel for weighting the autocovariances, we prove that our procedure is asymptotically equivalent to one that is optimal under a mean-squared error loss function. Monte Carlo simulations suggest that our procedure performs tolerably well, although it does result in size distortions.
引用
收藏
页码:631 / 653
页数:23
相关论文
共 19 条