ON THE EIGENVALUES OF THE ELECTROSTATIC INTEGRAL OPERATOR .2.

被引:19
作者
AHNER, JF
机构
[1] Vanderbilt Univ, Dept Math, Nashville
关键词
D O I
10.1006/jmaa.1994.1025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A fundamental result in scattering and potential theory in R3 states that the spectrum of the electrostatic integral operator lies in the interval [-1,1). In the case of a sphere and a prolate spheroid, it is known that the spectrum of the operator lies in the interval [-1,0]. A fundamental question arises whether the spectrum of the operator always lies in this interval, or whether there exists a smooth surface for which the electrostatic integral operator has a positive eigenvalue. In this paper, this question is answered. A surface is produced whereby the underlying integral operator has a positive eigenvalue. (C) 1994 Academic Press. Inc.
引用
收藏
页码:328 / 334
页数:7
相关论文
共 11 条
[1]  
AHNER JF, 1986, J MATH ANAL APPL, V117, P187, DOI 10.1016/0022-247X(86)90255-6
[2]  
BACHMAN G, 1966, FUNCTIONAL ANAL
[3]  
Colton D., 1983, INTEGRAL EQUATION ME
[4]  
Flammer C., 1957, SPHEROIDAL WAVE FUNC
[5]  
HOBSON EW, 1961, THEORY SPHERICAL ELL
[6]  
KELLOGG OD, 1953, F POTENTIAL THEORY
[7]  
Kleinman R.E, 1976, LECT NOTES MATH, V561, P298
[8]  
MacRobert T., 1967, SPHERICAL HARMONICS
[9]  
Morse P., 1953, METHODS THEORETICAL
[10]  
Oberhettinger F., 1966, FORMULAS THEOREMS SP, DOI 10.1007/978-3-662-11761-3