WEYL ANOMALY AND CURCI-PAFFUTI THEOREM FOR SIGMA-MODELS ON MANIFOLDS WITH BOUNDARY

被引:9
作者
BEHRNDT, K
DORN, H
机构
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 1992年 / 7卷 / 07期
关键词
D O I
10.1142/S0217751X92000600
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We generalize the relation of the Weyl-anomaly coefficients to renormalization-group functions, and the Curci-Paffuti relation to the case of two-dimensional sigma-models on manifolds with boundary. The analysis is based on the use of minimal subtraction in a regularization with a dimensional cutoff. The renormalization-group functions are different on and off the boundary. This explicit dependence on the position in two-dimensional space raises serious problems for a straighforward string interpretation of the model if fields corresponding to excitations of both open and closed strings are involved.
引用
收藏
页码:1375 / 1390
页数:16
相关论文
empty
未找到相关数据