A DERIVATION OF THE BROADWELL EQUATION

被引:19
作者
CAPRINO, S [1 ]
DEMASI, A [1 ]
PRESUTTI, E [1 ]
PULVIRENTI, M [1 ]
机构
[1] UNIV ROMA TOR VERGATA,DIPARTIMENTO MATEMAT,I-00133 ROME,ITALY
关键词
D O I
10.1007/BF02104115
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a stochastic system of particles in a two dimensional lattice and prove that, under a suitable limit (i.e. N --> infinity, 3 --> O, N-epsilon-2 --> const, where N is the number of particles and epsilon is the mesh of the lattice) the one-particle distribution function converges to a solution of the two-dimensional Broadwell equation for all times for which the solution (of this equation) exists. Propagation of chaos is also proven.
引用
收藏
页码:443 / 465
页数:23
相关论文
共 7 条
[1]  
[Anonymous], 1975, LECT NOTES PHYS
[2]  
BOLDRIGHINI C, 1989, CARR2089 MATH PHYS R
[3]   A STOCHASTIC PARTICLE SYSTEM MODELING THE CARLEMAN EQUATION [J].
CAPRINO, S ;
DEMASI, A ;
PRESUTTI, E ;
PULVIRENTI, M .
JOURNAL OF STATISTICAL PHYSICS, 1989, 55 (3-4) :625-638
[4]  
DEMASI A, 1989, CARR589 MATH PHYS RE
[5]   ON THE CAUCHY-PROBLEM FOR BOLTZMANN EQUATIONS - GLOBAL EXISTENCE AND WEAK STABILITY [J].
DIPERNA, RJ ;
LIONS, PL .
ANNALS OF MATHEMATICS, 1989, 130 (02) :321-366
[6]   GLOBAL VALIDITY OF THE BOLTZMANN-EQUATION FOR TWO-DIMENSIONAL AND 3-DIMENSIONAL RARE-GAS IN VACUUM - ERRATUM AND IMPROVED RESULT [J].
ILLNER, R ;
PULVIRENTI, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 121 (01) :143-146