NEW R-MATRICES ASSOCIATED WITH FINITE DIMENSIONAL REPRESENTATIONS OF UQ(SL(2)) AT ROOTS OF UNITY

被引:22
作者
GOMEZ, C [1 ]
RUIZALTABA, M [1 ]
SIERRA, G [1 ]
机构
[1] CSIC, INST FIS FUNDAMENTAL, E-28042 MADRID, SPAIN
关键词
D O I
10.1016/0370-2693(91)90020-Q
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct the R-matrix which intertwines between "semi-cyclic" representations of U(q)(sl(2)) with q3 = 1. When q(p) = 1 (for odd p), we call semi-cyclic representations those of dimension p which are characterized by the following value of the center of U(q)(sl(2)): E(p) = 0, F(p) = chi, KAPPA(p) = lambda-p. As in the cyclic case, the values of x and lambda-p of two different representations for which the intertwiner exists are constrained to lie on an algebraic curve, chi = kappa(1 -lambda-p). The main interest of our approach is that we do not need to resort to the affine extension of U(q)(sl(2)) in order to construct a spectral-dependent R-matrix.
引用
收藏
页码:95 / 98
页数:4
相关论文
共 20 条
[1]   DUALITY AND QUANTUM GROUPS [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :347-398
[2]   QUANTUM GROUP INTERPRETATION OF SOME CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
PHYSICS LETTERS B, 1989, 220 (1-2) :142-152
[3]   HIDDEN QUANTUM SYMMETRIES IN RATIONAL CONFORMAL FIELD-THEORIES [J].
ALVAREZGAUME, L ;
GOMEZ, C ;
SIERRA, G .
NUCLEAR PHYSICS B, 1989, 319 (01) :155-186
[4]   NEW SOLUTIONS OF THE STAR TRIANGLE RELATIONS FOR THE CHIRAL POTTS-MODEL [J].
BAXTER, RJ ;
PERK, JHH ;
AUYANG, H .
PHYSICS LETTERS A, 1988, 128 (3-4) :138-142
[5]   CHIRAL POTTS-MODEL AS A DESCENDANT OF THE 6-VERTEX MODEL [J].
BAZHANOV, VV ;
STROGANOV, YG .
JOURNAL OF STATISTICAL PHYSICS, 1990, 59 (3-4) :799-817
[6]   R MATRIX FOR CYCLIC REPRESENTATIONS OF UQ(SL(3,C)) AT Q3=1 [J].
DATE, E ;
JIMBO, M ;
MIKI, K ;
MIWA, T .
PHYSICS LETTERS A, 1990, 148 (1-2) :45-49
[7]  
DATE E, 1989, P S PURE MATH, V49, P295
[8]  
DATE E, 1990, RIMS706 PREPR
[9]  
DECONCINI C, 1990, QUANTUM GROUP REPRES
[10]  
DRINFELD VG, 1987, 1986 P INT C MATH BE, P798