THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON GENERAL TRIANGULATIONS

被引:193
作者
CAI, ZQ [1 ]
MANDEL, J [1 ]
MCCORMICK, S [1 ]
机构
[1] UNIV COLORADO,COMPUTAT MATH GRP,DENVER,CO 80217
关键词
FINITE VOLUME; FINITE ELEMENT; ERROR ESTIMATES; DISCRETIZATION; ADAPTIVE;
D O I
10.1137/0728022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper develops discretization error estimates for the finite volume element method on general triangulations of a polygonal domain in R2 using a special type of control volume. The theory applies to diffusion equations of the form -del (A del u) = f in OMEGA, u = O on partial-OMEGA. Under fairly general conditions, the theory establishes O(h) estimates of the error in a discrete H1 seminorm. Under an additional assumption concerning local uniformity of the triangulation, the estimate is improved to O(h2).
引用
收藏
页码:392 / 402
页数:11
相关论文
共 14 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]  
Baliga B. R., 1980, Numerical Heat Transfer, V3, P393, DOI 10.1080/01495728008961767
[3]   SOME ERROR-ESTIMATES FOR THE BOX METHOD [J].
BANK, RE ;
ROSE, DJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :777-787
[4]  
CAI Z, 1990, THESIS U COLORADO DE
[5]   ON THE ACCURACY OF THE FINITE VOLUME ELEMENT METHOD FOR DIFFUSION-EQUATIONS ON COMPOSITE GRIDS [J].
CAI, ZQ ;
MCCORMICK, S .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (03) :636-655
[6]  
Ciarlet P.G., 2002, FINITE ELEMENT METHO
[7]   ON 1ST AND 2ND ORDER BOX SCHEMES [J].
HACKBUSCH, W .
COMPUTING, 1989, 41 (04) :277-296
[8]  
Heinrich B, 1987, FINITE DIFFERENCE ME
[9]  
KALDEC J, 1964, CZEXHOSLOVAK MATH J, V14, P386
[10]  
LIU C, 1988, 11TH P INT C CFD WIL