FRAGMENTATION DYNAMICS IN FRACTAL AND EUCLIDEAN SYSTEMS

被引:5
作者
GOMES, MAF
VASCONCELOS, GL
机构
关键词
D O I
10.1016/0010-4655(89)90089-1
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
引用
收藏
页码:257 / 261
页数:5
相关论文
共 8 条
[1]   FRAGMENT-SIZE DISTRIBUTION IN DISINTEGRATION BY MAXIMUM-ENTROPY FORMALISM [J].
ENGLMAN, R ;
RIVIER, N ;
JAEGER, Z .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1987, 56 (06) :751-769
[2]   PERCOLATION THEORETICAL TREATMENT OF TWO-DIMENSIONAL FRAGMENTATION IN SOLIDS [J].
ENGLMAN, R ;
JAEGER, Z ;
LEVI, A .
PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1984, 50 (02) :307-315
[3]  
GOMES MAF, 1988, 2ND P WORKSH SCAL FR
[4]   GEOMETRIC STATISTICS AND DYNAMIC FRAGMENTATION [J].
GRADY, DE ;
KIPP, ME .
JOURNAL OF APPLIED PHYSICS, 1985, 58 (03) :1210-1222
[5]   FRAGMENTATION BY MOLECULAR-DYNAMICS - THE MICROSCOPIC BIG-BANG [J].
HOLIAN, BL ;
GRADY, DE .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1355-1358
[6]  
Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT
[7]   DYNAMIC SCALING FOR THE FRAGMENTATION OF REACTIVE POROUS-MEDIA [J].
SAHIMI, M ;
TSOTSIS, TT .
PHYSICAL REVIEW LETTERS, 1987, 59 (08) :888-891
[8]   DYNAMIC SCALING FOR AGGREGATION OF CLUSTERS [J].
VICSEK, T ;
FAMILY, F .
PHYSICAL REVIEW LETTERS, 1984, 52 (19) :1669-1672