COMPARISON OF DISSIMILARITY PATTERNS OF ESCHERICHIA-COLI, YEAST AND MAMMALIAN TRANSFER-RNAS

被引:8
作者
STEINBERG, SV
KISSELEV, LL
机构
[1] Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 117984 Moscow, 32, ul Vavilova
关键词
TRANSFER RNA; AMINOACYL-TRANSFER RNA SYNTHETASE; TRANSFER RNA IDENTITY;
D O I
10.1016/0300-9084(92)90111-Q
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A number of experimental approaches have been developed for identification of recognition (identity) sites in tRNAs. Along with them a theoretical methodology has been proposed by McClain et al that is based on concomitant analysis of all tRNA sequences from a given species. This approach allows an evaluation of nucleotide combinations present in isoacceptor tRNAs specific for the given amino acid, and not present in equivalent positions in cloverleaf structure in other tRNAs of the same organism. These elements predicted from computer analysis of the databank could be tested experimentally for their participation in forming recognition sites. The correlation between theoretical predictions and experimental data appeared promising. The aim of the present work consisted of introducing further improvements into McClain's procedure by: i), introducing into analysis a variable region in tRNAs which had not been previously considered; to accomplish this, 'normalization' of variable nucleotides was suggested, based on primary and tertiary structures of tRNAs; ii), developing a new procedure for comparison of patterns for synonymous and non-synonymous tRNAs from different organisms; iii), analysis of 3- and 4-positional contacts between tRNAs and enzymes in addition to a formerly used 2-positional model. A systematic application of McClain's procedure to mammalian, yeast and E coli tRNAs led to the following results: i), imitancy patterns for non-synonymous tRNAs of any amino acid specificity and from any organisms analysed so far overlap by no more than 30%, providing a structural basis for discrimination with high fidelity between cognate and non-cognate tRNAs; ii), the predicted identity sites are non-randomly distributed within tRNA molecules; the dominant role is ascribed to only two regions-anticodon and amino acid stem which are located far apart from one another at extremes of all tRNA molecules; iii), the imitancy patterns for synonymous tRNAs in lower (yeast) and higher (mammalian) eukaryotes are similar but not identical; iv), distribution of predicted identity sites in the cloverleaf structure in prokaryotes and eukaryotes is essentially different: in eubacterial tRNAs the major role in recognition plays anticodon and/or amino acid acceptor stem, whereas in eukaryotic (both unicellular and multicellular) tRNAs the remaining part of the molecules is also involved in recognition; v), the imitancy patterns of synonymous tRNAs from prokaryotes and eukaryotes are dissimilar; this observation leads to the prediction that the tRNA identity sites for the same amino acid in prokaryotes and eukaryotes may differ.
引用
收藏
页码:337 / 351
页数:15
相关论文
共 30 条
  • [1] ALIGAN T, 1986, NUCLEIC ACIDS RES, V14, P375
  • [2] STRUCTURE OF TRANSFER-RNA MOLECULES CONTAINING LONG VARIABLE LOOP
    BRENNAN, T
    SUNDARALINGAM, M
    [J]. NUCLEIC ACIDS RESEARCH, 1976, 3 (11) : 3235 - 3251
  • [3] TRANSFER-RNAS - THE 2ND GENETIC-CODE
    DEDUVE, C
    [J]. NATURE, 1988, 333 (6169) : 117 - 118
  • [4] SOLUTION STRUCTURE OF A TRANSFER-RNA WITH A LARGE VARIABLE REGION - YEAST TRANSFER RNASER
    DOCKBREGEON, AC
    WESTHOF, E
    GIEGE, R
    MORAS, D
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1989, 206 (04) : 707 - 722
  • [5] FACTORS DETERMINING SPECIFICITY OF TERTIARY RNA AMINOACYLATION REACTION - NON-ABSOLUTE SPECIFICITY OF TERTIARY RNA-AMINOACYL TERTIARY RNA-SYNTHETASE RECOGNITION AND PARTICULAR IMPORTANCE OF MAXIMAL VELOCITY
    EBEL, JP
    GIEGE, R
    BONNET, J
    KERN, D
    BEFORT, N
    BOLLACK, C
    FASIOLO, F
    GANGLOFF, J
    DIRHEIMER, G
    [J]. BIOCHIMIE, 1973, 55 (05) : 547 - 557
  • [6] GAUSS DH, 1979, TRANSFER RNA STRUCTU, P519
  • [7] CONVERSION OF AMINOACYLATION SPECIFICITY FROM TRANSFER RNA(TYR) TO TRANSFER RNA(SER) INVITRO
    HIMENO, H
    HASEGAWA, T
    UEDA, T
    WATANABE, K
    SHIMIZU, M
    [J]. NUCLEIC ACIDS RESEARCH, 1990, 18 (23) : 6815 - 6819
  • [8] INCORRECT AMINOACYLATIONS CATALYZED BY PHENHLALANYL-TRNA AND VALYL-TRNA SYNTHETASES FROM YEAST
    KERN, D
    EBEL, JP
    GIEGE, R
    [J]. EUROPEAN JOURNAL OF BIOCHEMISTRY, 1972, 31 (01): : 148 - &
  • [9] KISSELEV LL, 1974, ADV ENZYMOL RAMB, V40, P141
  • [10] THE ROLE OF THE ANTICODON IN RECOGNITION OF TRANSFER-RNA BY AMINOACYL-TRANSFER RNA-SYNTHETASES
    KISSELEV, LL
    [J]. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY, 1985, 32 : 237 - 266