A DIFFERENT CONSIDERATION ABOUT THE GLOBALLY ASYMPTOTICALLY STABLE SOLUTION OF THE PERIODIC N-COMPETING SPECIES PROBLEM

被引:56
作者
TINEO, A
ALVAREZ, C
机构
[1] Departamento de Matematicas, Facultad de Ciencias, Universidad de Los Andes, Merida
关键词
D O I
10.1016/0022-247X(91)90220-T
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Volterra-Lotka equations for n-competing species (n ≥ 2) in which the right-hand sides are periodic in time. We show that conditions given by K. Gopalsamy (J. Austral. Math. Soc. Ser. B 27, 1985, 66-72), which imply the existence of a periodic solution with positive components, also imply the uniqueness and asymptotic stability of the solution. © 1991.
引用
收藏
页码:44 / 50
页数:7
相关论文
共 5 条
[1]  
ADMAD S, IN PRESS ALMOST PERI
[2]   AN APPLICATION OF TOPOLOGICAL-DEGREE TO THE PERIODIC COMPETING SPECIES PROBLEM [J].
ALVAREZ, C ;
LAZER, AC .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1986, 28 :202-219
[3]  
Bellman R., 1960, INTRO MATRIX ANAL, DOI [10.1137/1.9781611971170.fm, DOI 10.1137/1.9781611971170.FM]
[4]   GLOBAL ASYMPTOTIC STABILITY IN A PERIODIC LOTKA-VOLTERRA SYSTEM [J].
GOPALSAMY, K .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 27 (JUL) :66-72