A MULTIPIPE MODEL OF GENERAL STRIP TRANSMISSION-LINES FOR RAPID CONVERGENCE OF INTEGRAL-EQUATION SINGULARITIES

被引:18
作者
HOWARD, GE [1 ]
YANG, JJ [1 ]
CHOW, YL [1 ]
机构
[1] UNIV WATERLOO,WATERLOO N2L 3G1,ONTARIO,CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1109/22.127509
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An integral equation for solving thin conducting strip problems always involves three singularities, viz, two charge singularities at the strip edges and the Green's function singularity for close proximity of source and field points. This paper overcomes the singularity convergence problem using Gauss-Chebyshev quadrature for the edge charges, but more-importantly by a multipipe model for the Green's function singularity. This model applies equally well to both two-dimensional (2-D) and three-dimensional (3-D) problems of metallic strips embedded in multilayer dielectric substrates. To reduce the scope, however, this paper analyzes only the quasi-TEM cases of 2-D thin strip transmission lines in multilayer dielectric substrates.
引用
收藏
页码:628 / 636
页数:9
相关论文
共 18 条
[1]  
BHAT B, 1989, STRIPLINE LIKE TRANS, P115
[2]  
BINN KJ, 1973, ANAL COMPUTATION ELE, P179
[3]   COMPLEX IMAGES FOR ELECTROSTATIC-FIELD COMPUTATION IN MULTILAYERED MEDIA [J].
CHOW, YL ;
YANG, JJ ;
HOWARD, GE .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1991, 39 (07) :1120-1125
[4]  
Djordjevic AR, 1989, MATRIX PARAMETERS MU
[5]  
DRAXLER PJ, 1991, 21ST P EUR MICR C ST, P1284
[6]  
HARME PH, 1989, AEU-ARCH ELEKTRON UB, V43, P245
[7]  
HOFFMANN RK, 1987, HDB MICROWAVE INTEGR, P142
[8]  
HUBER DA, 1991, THESIS U WATERLOO WA
[9]   HIGHER-ORDER ASYMPTOTIC BOUNDARY-CONDITION FOR THE FINITE-ELEMENT MODELING OF 2-DIMENSIONAL TRANSMISSION-LINE STRUCTURES [J].
KHEBIR, A ;
KOUKI, AB ;
MITTRA, R .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1990, 38 (10) :1433-1438
[10]   CAPACITANCE AND INDUCTANCE MATRICES FOR MULTISTRIP STRUCTURES IN MULTILAYERED ANISOTROPIC DIELECTRICS [J].
MEDINA, F ;
HORNO, M .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1987, 35 (11) :1002-1008