QUADRATIC CONVERGENCE OF JACOBI METHOD FOR NORMAL MATRICES

被引:3
作者
LOIZOU, G
机构
关键词
D O I
10.1093/comjnl/15.3.274
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:274 / &
相关论文
共 18 条
[1]   SOLUTION TO EIGENPROBLEM BY A NORM REDUCING JACOBI TYPE METHOD [J].
EBERLEIN, PJ ;
BOOTHROY.J .
NUMERISCHE MATHEMATIK, 1968, 11 (01) :1-&
[2]   A JACOBI-LIKE METHOD FOR THE AUTOMATIC COMPUTATION OF EIGENVALUES AND EIGENVECTORS OF AN ARBITRARY MATRIX [J].
EBERLEIN, PJ .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1962, 10 (01) :74-88
[3]  
EBERLEIN PJ, 1970, NUMER MATH, V14, P232
[4]  
FORSYTHE GE, 1970, T AM MATH SOC, V94, P1
[5]   A PROCEDURE FOR THE DIAGONALIZATION OF NORMAL MATRICES [J].
GOLDSTINE, HH ;
HORWITZ, LP .
JOURNAL OF THE ACM, 1959, 6 (02) :176-195
[6]   ON THE SPEED OF CONVERGENCE OF CYCLIC AND QUASICYCLIC JACOBI METHODS FOR COMPUTING EIGENVALUES OF HERMITIAN MATRICES [J].
HENRICI, P .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1958, 6 (02) :144-162
[7]   THE VARIATION OF THE SPECTRUM OF A NORMAL MATRIX [J].
HOFFMAN, AJ ;
WIELANDT, HW .
DUKE MATHEMATICAL JOURNAL, 1953, 20 (01) :37-39
[8]  
LEVINSON ED, 1966, ZH VYCH MAT MAT FIZ, V6, P556
[9]  
Ruhe A., 1967, BIT, V7, P305, DOI [10.1007/BF01939324, DOI 10.1007/BF01939324]
[10]  
RUHE A, 1966, BIT, V8, P210