FINDING K-CUTS WITHIN TWICE THE OPTIMAL

被引:116
作者
SARAN, H
VAZIRANI, VV
机构
[1] Indian Inst of Technology, New Delhi
关键词
GRAPH PARTITIONING; MINIMUM CUTS; APPROXIMATION ALGORITHMS;
D O I
10.1137/S0097539792251730
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Two simple approximation algorithms for the minimum k-cut problem are presented. Each algorithm finds a k cut having weight within a factor of (2-2/k) of the optimal. One algorithm is particularly efficient-it requires a total of only n-1 maximum flow computations for finding a set of near-optimal k cuts, one for each value of k between 2 and n.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 16 条
[1]  
ARORA S, 1992, 33RD P IEEE S F COMP, P14
[2]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[3]   OPTIMAL ATTACK AND REINFORCEMENT OF A NETWORK [J].
CUNNINGHAM, WH .
JOURNAL OF THE ACM, 1985, 32 (03) :549-561
[4]  
DALHAUS E, 1992, 24TH P ANN ACM S THE, P241
[5]  
Garey M. R., 1979, COMPUTERS INTRACTABI
[6]  
GOLDBERG AV, 1987, 19TH P ACM S THEOR C, P136
[7]  
Goldschmidt O., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P444, DOI 10.1109/SFCS.1988.21960
[8]   MULTI-TERMINAL NETWORK FLOWS [J].
GOMORY, RE ;
HU, TC .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1961, 9 (04) :551-570
[9]   CONNECTIVITY AND EDGE-DISJOINT SPANNING-TREES [J].
GUSFIELD, D .
INFORMATION PROCESSING LETTERS, 1983, 16 (02) :87-89
[10]  
HE X, 1991, J ALGORITHMS, V12, P23