ZEAXANTHIN DEPENDENT AND ZEAXANTHIN INDEPENDENT CHANGES IN NONPHOTOCHEMICAL ENERGY-DISSIPATION

被引:16
作者
RICHTER, M
GOSS, R
BOTHIN, B
WILD, A
机构
[1] Institut für Allgemeine Botanik, Universität Mainz, Mainz, D-55099
关键词
SPINACIA OLERACEA; CHLOROPHYLL FLUORESCENCE; ISOLATED THYLAKOIDS; QUANTUM YIELD OF OXYGEN EVOLUTION; ZEAXANTHIN;
D O I
10.1016/S0176-1617(11)81812-2
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The influence of zeaxanthin on high-energy-state quenching (q(E)) of room temperature chlorophyll fluorescence and on the quantum yield of oxygen evolution(Phi(O2)) has been studied with isolated spinach thylakoids. A set of three different pretreatments was tested which all led to thylakoids with high contents of zeaxanthin. Depending on the presence of light the pretreatments differed strongly with respect to their effect on nonphotochemical fluorescence quenching. Independently from the extent of changes in nonphotochemical energy dissipation in the membrane energized state as reflected by nonphotochemical quenching the light pretreatments caused also changes in nonphotochemical energy dissipation in the nonenergized state as measured by the quantum yield of oxygen evolution (Phi(O2)) in uncoupled thylakoids. Zeaxanthin was not involved in the decrease of (Phi(O2)).
引用
收藏
页码:495 / 499
页数:5
相关论文
共 20 条
[1]   ROLE OF THE XANTHOPHYLL CYCLE IN PHOTOPROTECTION ELUCIDATED BY MEASUREMENTS OF LIGHT-INDUCED ABSORBENCY CHANGES, FLUORESCENCE AND PHOTOSYNTHESIS IN LEAVES OF HEDERA-CANARIENSIS [J].
BILGER, W ;
BJORKMAN, O .
PHOTOSYNTHESIS RESEARCH, 1990, 25 (03) :173-185
[2]   LIGHT-INDUCED SPECTRAL ABSORBANCE CHANGES IN RELATION TO PHOTOSYNTHESIS AND THE EPOXIDATION STATE OF XANTHOPHYLL CYCLE COMPONENTS IN COTTON LEAVES [J].
BILGER, W ;
BJORKMAN, O ;
THAYER, SS .
PLANT PHYSIOLOGY, 1989, 91 (02) :542-551
[3]   PHOTOINHIBITION AND ZEAXANTHIN FORMATION IN INTACT LEAVES - A POSSIBLE ROLE OF THE XANTHOPHYLL CYCLE IN THE DISSIPATION OF EXCESS LIGHT ENERGY [J].
DEMMIG, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1987, 84 (02) :218-224
[4]   CAROTENOIDS AND PHOTOPROTECTION IN PLANTS - A ROLE FOR THE XANTHOPHYLL ZEAXANTHIN [J].
DEMMIGADAMS, B .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1020 (01) :1-24
[5]   ZEAXANTHIN AND THE INDUCTION AND RELAXATION KINETICS OF THE DISSIPATION OF EXCESS EXCITATION-ENERGY IN LEAVES IN 2-PERCENT O2, 0-PERCENT CO2 [J].
DEMMIGADAMS, B ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC .
PLANT PHYSIOLOGY, 1989, 90 (03) :887-893
[6]   INHIBITION OF ZEAXANTHIN FORMATION AND OF RAPID CHANGES IN RADIATIONLESS ENERGY-DISSIPATION BY DITHIOTHREITOL IN SPINACH LEAVES AND CHLOROPLASTS [J].
DEMMIGADAMS, B ;
ADAMS, WW ;
HEBER, U ;
NEIMANIS, S ;
WINTER, K ;
KRUGER, A ;
CZYGAN, FC ;
BILGER, W ;
BJORKMAN, O .
PLANT PHYSIOLOGY, 1990, 92 (02) :293-301
[7]   LINEAR-MODELS RELATING XANTHOPHYLLS AND LUMEN ACIDITY TO NONPHOTOCHEMICAL FLUORESCENCE QUENCHING - EVIDENCE THAT ANTHERAXANTHIN EXPLAINS ZEAXANTHIN-INDEPENDENT QUENCHING [J].
GILMORE, AM ;
YAMAMOTO, HY .
PHOTOSYNTHESIS RESEARCH, 1993, 35 (01) :67-78
[8]   LIGHT DEPENDENT DECREASE OF PH-VALUE IN A CHLOROPLAST COMPARTMENT CAUSING ENZYMATIC INTERCONVERSION OF VIOLAXANTHIN TO ZEAXANTHIN - RELATIONS TO PHOTOPHOSPHORYLATION [J].
HAGER, A .
PLANTA, 1969, 89 (03) :224-&
[9]   CONTROL OF THE LIGHT-HARVESTING FUNCTION OF CHLOROPLAST MEMBRANES BY AGGREGATION OF THE LHCII CHLOROPHYLL PROTEIN COMPLEX [J].
HORTON, P ;
RUBAN, AV ;
REES, D ;
PASCAL, AA ;
NOCTOR, G ;
YOUNG, AJ .
FEBS LETTERS, 1991, 292 (1-2) :1-4
[10]  
Lichtenthaler Hartmut K., 1992, P517