WILSON BASES AND MODULATION SPACES

被引:57
作者
FEICHTINGER, HG
GROCHENIG, K
WALNUT, D
机构
[1] UNIV CONNECTICUT,DEPT MATH,STORRS,CT 06269
[2] GEORGE MASON UNIV,FAK MATH SCI,FAIRFAX,VA 22030
关键词
D O I
10.1002/mana.19921550102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the recently discovered WILSON bases of exponential decay are unconditional bases for all modulation spaces on R, including the classical BESSEL potential spaces, the Segal algebra S0, and the SCHWARTZ space. As a consequence we obtain new bases for spaces of entire functions. On the other hand, the WILSON bases are no unconditional bases for the ordinary L(p)-spaces for p not-equal 2.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 19 条
[2]   HEISENBERG PROOF OF THE BALIAN LOW THEOREM [J].
BATTLE, G .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 15 (02) :175-177
[3]   THE WAVELET TRANSFORM, TIME-FREQUENCY LOCALIZATION AND SIGNAL ANALYSIS [J].
DAUBECHIES, I .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (05) :961-1005
[4]  
DAUBECHIES I, IN PRESS SIAM J MATH
[5]  
Edwards R.E., 1977, LITTLEWOOD PALEY MUL
[6]  
Feichtinger H., 1983, MODULATION SPACES LO
[7]   ON A NEW SEGAL ALGEBRA [J].
FEICHTINGER, HG .
MONATSHEFTE FUR MATHEMATIK, 1981, 92 (04) :269-289
[8]   ATOMIC CHARACTERIZATIONS OF MODULATION SPACES THROUGH GABOR-TYPE REPRESENTATIONS [J].
FEICHTINGER, HG .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1989, 19 (01) :113-125
[9]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .2. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
MONATSHEFTE FUR MATHEMATIK, 1989, 108 (2-3) :129-148
[10]   BANACH-SPACES RELATED TO INTEGRABLE GROUP-REPRESENTATIONS AND THEIR ATOMIC DECOMPOSITIONS .1. [J].
FEICHTINGER, HG ;
GROCHENIG, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 86 (02) :307-340