The extent of in vitro Cu 2+-dependent oxidation of low-density lipoproteins (LDL) has been reported to vary widely depending upon reaction conditions. In this study, the effect of proteins and amino acids on Cu2+-induced LDL oxidation was examined. Treatment of LDL with 5 mu M CuSO4 for 18 h in either phosphate-buffered saline (PBS) or Ham's F-10 medium resulted in extensive oxidation as determined by the content of thiobarbituric acid reactive substances (TBARS) and by increased lipoprotein electronegativity. In PBS, oxidation was entirely blocked by histidine and the tripeptide, gly-his-lys (GHK). Oxidation was also prevented by bovine serum albumin, but superoxide dismutase (SOD) provided only 20% protection. Both proteins bound similar amounts of Cu 2+, but albumin appeared to be a more effective peroxyl radical trap as evidenced by its ability to prevent LDL oxidation induced by 2,2'-azo-bis(2-amidinopropane hydrochloride). In F-10 medium, SOD had marked inhibitory effects, in contrast to PBS. The addition of disulfides to PBS markedly enhanced the ability of SOD to inhibit oxidation. These results indicate that medium Components which affect Cu2+ availability influence LDL oxidation and suggest that albumin is ideally suited as a plasma antioxidant to prevent oxidative modification of LDL. Furthermore, in certain instances, the inhibitory effects of SOD may be attributable to effects such as Cu2+ binding rather than dismutation of superoxide.