QUASI-CONVEX SETS AND SIZE X CURVATURE CONDITION, APPLICATION TO NONLINEAR INVERSION

被引:7
作者
CHAVENT, G [1 ]
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,F-78153 LE CHESNAY,FRANCE
关键词
D O I
10.1007/BF01447739
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a family of sets of a Hilbert space ("quasi-convex sets") on which a generalization of the usual theory of projection on convex sets can be defined (existence, uniqueness, and stability of the projection of all points of some neighborhood of the set). We then give a constructive sufficient condition, called the size x curvature condition, for a set D to be quasi-convex, which involves radii of curvatures of curves lying on the set D. Finally, we use the above result for the study of nonlinear least-squares problems, as they appear in parameter estimation, for which we give a sufficient condition ensuring existence, uniqueness, and stability.
引用
收藏
页码:129 / 169
页数:41
相关论文
共 14 条
[1]  
ABATZOGLOU T, 1980, PAC J MATH, V87, P233
[2]   LIPSCHITZ CONTINUITY OF THE METRIC PROJECTION [J].
ABATZOGLOU, T .
JOURNAL OF APPROXIMATION THEORY, 1979, 26 (03) :212-218
[3]  
BANKS HT, 1987, 8742 BROWN U LEFS CT
[4]  
CHAVENET G, 1990, LECTURE NOTE CONTROL
[5]   ON THE UNIQUENESS OF LOCAL MINIMA FOR GENERAL ABSTRACT NONLINEAR LEAST-SQUARES PROBLEMS [J].
CHAVENT, G .
INVERSE PROBLEMS, 1988, 4 (02) :417-433
[6]  
CHAVENT G, 1983, MAT APL COMPUT, V2, P3
[7]  
CHAVENT G, 1987, JUL P IFAC WORLD C M
[8]  
CHAVENT G, 1979, 5TH P IFAC S, V1, P85
[9]  
COLONIUS F, 1986, J REINE ANGEW MATH, V370, P1
[10]   OUTPUT LEAST-SQUARES STABILITY IN ELLIPTIC-SYSTEMS [J].
COLONIUS, F ;
KUNISCH, K .
APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 19 (01) :33-63