A POLYNOMIAL ALGORITHM FOR THE KAPPA-CUT PROBLEM FOR FIXED KAPPA

被引:166
作者
GOLDSCHMIDT, O
HOCHBAUM, DS
机构
[1] UNIV CALIF BERKELEY, SCH BUSINESS ADM, BERKELEY, CA 94720 USA
[2] UNIV CALIF BERKELEY, DEPT IEOR, BERKELEY, CA 94720 USA
关键词
CLUSTERING; MIN-CUT; MAX-FLOW; COMPLEXITY; POLYNOMIAL ALGORITHM; KAPPA-CUT;
D O I
10.1287/moor.19.1.24
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The k-cut problem is to find a partition of an edge weighted graph into k nonempty components, such that the total edge weight between components is minimum. This problem is NP-complete for an arbitrary k and its version involving fixing a vertex in each component is NP-hard even for k = 3. We present a polynomial algorithm for k fixed, that runs in O(n(k2/2-3k/2+4)T(n, m)) steps, where T(n, m) is the running time required to find the minimum (s, t)-cut on a graph with n vertices and m edges.
引用
收藏
页码:24 / 37
页数:14
相关论文
共 16 条
[1]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[2]   OPTIMAL ATTACK AND REINFORCEMENT OF A NETWORK [J].
CUNNINGHAM, WH .
JOURNAL OF THE ACM, 1985, 32 (03) :549-561
[3]  
DALHAUS E, 1992, 1992 P ACM S THEOR C, P241
[4]  
Ford L., 1962, FLOWS NETWORKS, V71, P1059, DOI 10.2307/2311955
[5]  
Garey M. R., 1976, Theoretical Computer Science, V1, P237, DOI 10.1016/0304-3975(76)90059-1
[6]   ASYMPTOTICALLY OPTIMAL LINEAR ALGORITHM FOR THE MINIMUM K-CUT IN A RANDOM GRAPH [J].
GOLDSCHMIDT, O ;
HOCHBAUM, DS .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (01) :58-73
[7]   CONNECTIVITY AND EDGE-DISJOINT SPANNING-TREES [J].
GUSFIELD, D .
INFORMATION PROCESSING LETTERS, 1983, 16 (02) :87-89
[8]   COMPUTING THE STRENGTH OF A GRAPH [J].
GUSFIELD, D .
SIAM JOURNAL ON COMPUTING, 1991, 20 (04) :639-654
[9]  
GUSFIELD D, 1987, INFORM PROCESS LETT, V20, P639
[10]  
HOCHBAUM DS, SIAM J ALGEBRAIC DIS, V6, P707