Mucous (goblet) cell proliferation and hypersecretion of airway mucus are important characteristics of human respiratory disorders, especially chronic bronchitis and cystic fibrosis. These changes in secretory patterns also occur in animals experimentally exposed to chemical irritants such as ozone (O3), sulfur dioxide (SO2), and cigarette smoke. The cellular and molecular mechanisms involved in irritant-induced mucous cell metaplasia (MCM; transformation of airway epithelium, normally devoid of mucous cells, to a secretory epithelium containing numerous mucous cells) are still unclear. We used two experimental models of toxicant-induced MCM in rat airways to study the cellular and molecular changes that occur during the development of this respiratory tract lesion. MCM can be induced in the nasal transitional epithelium of rats by repeated exposure to ambient levels of ozone. In addition, MCM can be induced in the tracheobronchial airways of rats repeatedly exposed to endotoxin, a lipopolysaccharide-protein molecule found in the outer walls of Gram-negative bacteria. The pathogenesis of ozone- or endotoxin-induced MCM has been partially characterized using a variety of morphometric and histochemical techniques. Toxicant-induced changes in the numbers and types of airway epithelial cells have been estimated using morphometric methods designed for estimating the abundance of cell populations. Nasal pulmonary airway tissues are also processed for light microscopy and stained with Alcian Blue (pH 2.5)/Periodic Acid Schiff (AB/PAS) for detection of acidic and neutral mucosubstances (the specific glycoprotein product of mucous cells), respectively, within the tissue. Computerized image analysis is used to quantitate the amount of the stained mucous product within the airway epithelium. To better characterize the molecular and cellular events in the pathogenesis of ozone- or endotoxin-induced MCM in the rat airway epithelium, we are conducting studies to determine when, and in which epithelial cells, the mucin gene is expressed after exposure to the toxicant. In these studies, rats undergo single or repeated exposures to ozone or endotoxin and are then sacrificed immediately or a few days after the end of the exposures. Airway tissues are microdissected from specific regions of the exposed respiratory tract, and changes in mucin core polypeptide mRNA are evaluated by Northern analysis using human and rat mucin cDNA. In future studies using in situ hybridization, we will establish when, and in which epithelial cells, the expression of high molecular weight airway mucin is initiated in response to ozone or endotoxin. These cellular and molecular analyses are being conducted to better characterize the toxicant-induced changes involved in the metaplastic process. Results from these studies will help us to understand the pathogenesis of MCM and may provide insight into methods of treatment for these common airway lesions.