THE LATTICE COVERING TIME PROBLEM FOR SITES VISITED KAPPA-TIMES

被引:5
作者
MIRASSO, CR
MARTIN, HO
机构
[1] Departmento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata
来源
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER | 1991年 / 82卷 / 03期
关键词
D O I
10.1007/BF01357191
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The problem of the covering time for sites visited k-times is defined as the mean time taken by a random walk to visit each site of a lattice at least k times. We performed the investigation using Monte Carlo simulations over one dimensional lattices, of N sites, with periodic boundary conditions. Two different regions are investigated: N >> k >> 1 and k >> N >> 1. In the former region, we obtain a behaviour of the type t(k)/t1 = a infinity - Bk-0.35 + A(k) N-0.75, (a infinity < 1.6). In the latter region we obtain two possible behaviours: t(k) approximately k0.95 and t(k) approximately k(ln k)-0.5. Two formulas which have a very close behaviour.
引用
收藏
页码:433 / 436
页数:4
相关论文
共 8 条
  • [1] Feller W., 1950, INTRO PROBABILITY TH, V1
  • [2] Gardiner C.W., 1985, HDB STOCHASTIC METHO
  • [3] DIFFUSION IN REGULAR AND DISORDERED LATTICES
    HAUS, JW
    KEHR, KW
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 150 (5-6): : 263 - 406
  • [4] SIMULATION OF 3-DIMENSIONAL BOOTSTRAP PERCOLATION
    MANNA, SS
    STAUFFER, D
    HEERMANN, DW
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1989, 162 (01) : 20 - 26
  • [5] RANDOM WALKS ON LATTICES .2.
    MONTROLL, EW
    WEISS, GH
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1965, 6 (02) : 167 - +
  • [6] UNIVERSALITY IN THE LATTICE-COVERING TIME PROBLEM
    NEMIROVSKY, AM
    MARTIN, HO
    COUTINHOFILHO, MD
    [J]. PHYSICAL REVIEW A, 1990, 41 (02): : 761 - 767
  • [7] WEISS GH, 1983, ADV CHEM PHYS, V52, P363
  • [8] SOME EXACT RESULTS FOR THE LATTICE COVERING TIME PROBLEM
    YOKOI, CSO
    HERNANDEZMACHADO, A
    RAMIREZPISCINA, L
    [J]. PHYSICS LETTERS A, 1990, 145 (2-3) : 82 - 86