Improving the Generalization Properties of Radial Basis Function Neural Networks

被引:212
作者
Bishop, Chris [1 ]
机构
[1] Harwell Lab, Neural Networks Grp, AEA Technol, Didcot OX11 0RA, Oxon, England
关键词
D O I
10.1162/neco.1991.3.4.579
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An important feature of radial basis function neural networks is the existence of a fast, linear learning algorithm in a network capable of representing complex nonlinear mappings. Satisfactory generalization in these networks requires that the network mapping be sufficiently smooth. We show that a modification to the error functional allows smoothing to be introduced explicitly without significantly affecting the speed of training. A simple example is used to demonstrate the resulting improvement in the generalization properties of the network.
引用
收藏
页码:579 / 588
页数:10
相关论文
共 10 条
[1]  
Admoaitis R. A., 1990, P INT C NEU IN PRESS
[2]  
[Anonymous], 1965, J SOC IND APPL MAT B, DOI [10.1137/0702016, DOI 10.1137/0702016]
[3]  
BISHOP CM, 1990, INTERNATIONAL NEURAL NETWORK CONFERENCE, VOLS 1 AND 2, P749
[4]  
Broomhead D. S., 1988, Complex Systems, V2, P321
[5]  
Kohonen T., 1988, SELF ORG ASS MEMORY
[6]   INTERPOLATION OF SCATTERED DATA - DISTANCE MATRICES AND CONDITIONALLY POSITIVE DEFINITE FUNCTIONS [J].
MICCHELLI, CA .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (01) :11-22
[7]   NETWORKS FOR APPROXIMATION AND LEARNING [J].
POGGIO, T ;
GIROSI, F .
PROCEEDINGS OF THE IEEE, 1990, 78 (09) :1481-1497
[8]  
Rumelhart DE, 1986, ENCY DATABASE SYST, P45
[9]  
Tikhonov AN, 1977, VH WINSTON
[10]  
Webb A. R., 1991, 4453 RSRE