ENERGY EIGENVALUE LEVELS AND SINGULAR POINT ANALYSIS

被引:7
作者
STEEB, WH
HEISS, WD
机构
[1] UNIV WITWATERSRAND,CTR NONLINEAR STUDIES,JOHANNESBURG 2050,SOUTH AFRICA
[2] UNIV WITWATERSRAND,DEPT PHYS,JOHANNESBURG 2050,SOUTH AFRICA
关键词
D O I
10.1016/0375-9601(91)90734-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
From the eigenvalue equation H-lambda\PSI-n(lambda) > = E(n) (lambda)\PSI-n(lambda) > where H-lambda = H0 + lambda-V one can derive an autonomous system of first-order differential equations for the eigenvalues E(n)(lambda) and the matrix elements V(mn)(lambda) where lambda is the independent variable. We perform a Painleve test for a three-level system. It turns out that the equations of motion do not pass the Painleve test as such but in a weaker form. We show that the singular point analysis can be extended, since the singular points occur in complex conjugate pairs.
引用
收藏
页码:339 / 342
页数:4
相关论文
共 23 条
[2]  
Baumgartel H., 1964, MATH NACHR, V26, P361
[3]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[4]   SOLITON-LIKE STRUCTURE IN THE PARAMETRIC DISTORTIONS OF BOUNDED-SYSTEM ENERGY-SPECTRA [J].
GASPARD, P ;
RICE, SA ;
NAKAMURA, K .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :930-933
[5]   A GENERALIZATION OF THE CALOGERO-MOSER SYSTEM [J].
GIBBONS, J ;
HERMSEN, T .
PHYSICA D, 1984, 11 (03) :337-348
[6]   AVOIDED LEVEL-CROSSING AND EXCEPTIONAL POINTS [J].
HEISS, WD ;
SANNINO, AL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (07) :1167-1178
[7]   On the explanation of molecular spectra I [J].
Hund, F .
ZEITSCHRIFT FUR PHYSIK, 1927, 40 (10) :742-764
[8]   COMPLETE-INTEGRABILITY IN A QUANTUM DESCRIPTION OF CHAOTIC SYSTEMS [J].
NAKAMURA, K ;
LAKSHMANAN, M .
PHYSICAL REVIEW LETTERS, 1986, 57 (14) :1661-1664
[9]   DISTRIBUTION OF ENERGY EIGENVALUES IN THE IRREGULAR SPECTRUM [J].
PECHUKAS, P .
PHYSICAL REVIEW LETTERS, 1983, 51 (11) :943-946
[10]   SPECTRAL PROPERTIES OF THE SCALED QUARTIC ANHARMONIC-OSCILLATOR [J].
SHANLEY, PE .
ANNALS OF PHYSICS, 1988, 186 (02) :292-324