INDUCED TRAJECTORIES AND APPROXIMATE INERTIAL MANIFOLDS FOR THE GINZBURG-LANDAU PARTIAL-DIFFERENTIAL EQUATION

被引:25
作者
PROMISLOW, K
机构
[1] Institute for Applied Mathematics and Scientific Computing, Indiana University, Bloomington, IN 47405
来源
PHYSICA D | 1990年 / 41卷 / 02期
关键词
D O I
10.1016/0167-2789(90)90125-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies the long-time behavior of solutions to the Ginzburg-Landau partial differential equation. We explicitly produce four approximate inertial manifolds and associate with each manifold a thin neighborhood into which the orbits enter with an exponential speed and in a finite time. These neighborhoods localize the universal attractor. We consider the space-periodic case; however, with slight modifications, the construction carries over to Dirichlet and Neumann boundary conditions. © 1990.
引用
收藏
页码:232 / 252
页数:21
相关论文
共 20 条
[1]   ON THE GENERATION OF WAVES BY WIND [J].
BLENNERHASSETT, PJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1980, 298 (1441) :451-494
[2]  
CONSTANTIN P, 1988, INTEGRAL INTERTIAL M, V70
[3]   INERTIAL MANIFOLDS FOR NONLINEAR EVOLUTIONARY EQUATIONS [J].
FOIAS, C ;
SELL, GR ;
TEMAM, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1988, 73 (02) :309-353
[4]  
FOIAS C, 1988, J MATH PURE APPL, V67, P197
[5]   DIMENSION OF THE ATTRACTORS ASSOCIATED TO THE GINZBURG-LANDAU PARTIAL-DIFFERENTIAL EQUATION [J].
GHIDAGLIA, JM ;
HERON, B .
PHYSICA D, 1987, 28 (03) :282-304
[6]  
Haken H., 1983, ADV SYNERGETICS
[7]  
JAUBERTEAU F, IN PRESS APPL NUM MA
[8]  
MARION M, IN PRESS SIAM J NUM
[9]   TRANSITIONS TO CHAOS IN THE GINZBURG-LANDAU EQUATION [J].
MOON, HT ;
HUERRE, P ;
REDEKOPP, LG .
PHYSICA D, 1983, 7 (1-3) :135-150
[10]   3-FREQUENCY MOTION AND CHAOS IN THE GINZBURG-LANDAU EQUATION [J].
MOON, HT ;
HUERRE, P ;
REDEKOPP, LG .
PHYSICAL REVIEW LETTERS, 1982, 49 (07) :458-460