In our effort to develop synthetic immunogens as vaccines, we have focused on the combination of a known T-cell stimulating peptide with putative B-cell stimulating peptide epitopes derived from the sequences of respiratory syncytial (RS) virus proteins. The T-cell stimulating peptide consists of residues 45 through 60 of the 1A protein of RS virus, and it also contains an overlapping antibody binding (B-cell) site. Herein, we have combined the 1A T-cell stimulating peptide with a putative B-cell peptide epitope derived from the viral G glycoprotein using linear synthesis or using chemical crosslinking. The chimeric immunogens were compared to each other and to free peptides for their T- and B-cell stimulating properties. Both chimeras had potent T-cell stimulating and antibody-inducing activity. However, T-cells primed to free peptide differentially recognized the two chimeras and immunization with the chimeras primed T-cells with different specificity. Most strikingly, the two chimeras had opposite antibody-inducing properties: The chimera constructed by linear synthesis overwhelmingly elicited antibody directed against the G peptide, whereas the chimera constructed by chemical crosslinking over-whelmingly elicited antibody directed against the 1A peptide. Competition blocking studies revealed that the chimeras adopted different configurations in solution. The resulting antibody response, and hence the B-cell clone elicited, was consistent with the antibody accessibility of the individual peptide epitope. © 1990.