SINGLE-CLUSTER MONTE-CARLO DYNAMICS FOR THE ISING-MODEL

被引:61
作者
TAMAYO, P
BROWER, RC
KLEIN, W
机构
[1] BOSTON UNIV,CTR POLYMER STUDIES,BOSTON,MA 02215
[2] BOSTON UNIV,DEPT ELECT COMP & SYST ENGN,BOSTON,MA 02215
关键词
Cluster acceleration; Coniglio-Klein clusters; critical slowing down; Fortuin-Kasteleyn mapping; Swendsen-Wang algorithm; Wolff algorithm;
D O I
10.1007/BF01026564
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an extensive study of a new Monte Carlo acceleration algorithm introduced by Wolff for the Ising model. It differs from the Swendsen-Wang algorithm by growing and flipping single clusters at a random seed. In general, it is more efficient than Swendsen-Wang dynamics for d>2, giving zero critical slowing down in the upper critical dimension. Monte Carlo simulations give dynamical critical exponents zw=0.33±0.05 and 0.44+0.10 in d=2 and 3, respectively, and numbers consistent with zw=0 in d=4 and mean-field theory. We present scaling arguments which indicate that the Wolff mechanism for decorrelation differs substantially from Swendsen-Wang despite the apparent similarities of the two methods. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:1083 / 1094
页数:12
相关论文
共 17 条
[1]  
[Anonymous], 1979, MONTE CARLO METHODS
[2]   EMBEDDED DYNAMICS FOR PHI-4 THEORY [J].
BROWER, RC ;
TAMAYO, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (10) :1087-1090
[3]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[4]   GENERALIZATION OF THE FORTUIN-KASTELEYN-SWENDSEN-WANG REPRESENTATION AND MONTE-CARLO ALGORITHM [J].
EDWARDS, RG ;
SOKAL, AD .
PHYSICAL REVIEW D, 1988, 38 (06) :2009-2012
[5]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[6]  
Gould H., 1988, COMPUTER SIMULATION
[7]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[8]   SCALING ANSATZ FOR SWENDSEN-WANG DYNAMICS [J].
KLEIN, W ;
RAY, T ;
TAMAYO, P .
PHYSICAL REVIEW LETTERS, 1989, 62 (02) :163-166
[9]   CLUSTER SIZE AND BOUNDARY DISTRIBUTION NEAR PERCOLATION THRESHOLD [J].
LEATH, PL .
PHYSICAL REVIEW B, 1976, 14 (11) :5046-5055
[10]   GENERAL CLUSTER UPDATING METHOD FOR MONTE-CARLO SIMULATIONS [J].
NIEDERMAYER, F .
PHYSICAL REVIEW LETTERS, 1988, 61 (18) :2026-2029