NEURAL NETWORKS AND C-13 NMR SHIFT PREDICTION

被引:42
作者
DOUCET, JP
PANAYE, A
FEUILLEAUBOIS, E
LADD, P
机构
[1] Institut de Topologie et de Dynamique des Systèmes, Associé au CNRS, URA-34, Université Paris 7, 75005 Paris
来源
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES | 1993年 / 33卷 / 03期
关键词
D O I
10.1021/ci00013a007
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Computational neural networks are known to have the capability to predict complex mappings between input and output data. These new tools seem to be well-suited to NMR data. To treat simultaneously a whole set of compounds in the alkane family, we used a back-propagation neural network with a topological description as input. The results allow for a good prediction of the shifts because of the range of the test population (up to 62% of the known environments) and since ali types of carbons are taken into account without distinction of connectivity.
引用
收藏
页码:320 / 324
页数:5
相关论文
共 20 条