GENETIC ALGORITHMS FOR OPTIMAL IMAGE-ENHANCEMENT

被引:73
作者
PAL, SK
BHANDARI, D
KUNDU, MK
机构
[1] Machine Intelligence Unit, Indian Statistical Institute, Calcutta, 700 035
关键词
PATTERN RECOGNITION; IMAGE ENHANCEMENT; GENETIC ALGORITHMS; AMBIGUITY MEASURES;
D O I
10.1016/0167-8655(94)90058-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Genetic algorithms represent a class of highly parallel adaptive search processes for solving a wide range of optimization and machine learning problems. The present work is an attempt to demonstrate their adaptivity and effectiveness for searching global optimal solutions in selecting an appropriate image enhancement operator automatically.
引用
收藏
页码:261 / 271
页数:11
相关论文
共 9 条
[1]   SCENE RECOGNITION USING GENETIC ALGORITHMS WITH SEMANTIC NETS [J].
ANKENBRANDT, CA ;
BUCKLES, BP ;
PETRY, FE .
PATTERN RECOGNITION LETTERS, 1990, 11 (04) :285-293
[2]  
Davis L, 1987, GENETIC ALGORITHMS S
[3]  
Ekstrom M. P., 1984, DIGITAL IMAGE PROCES
[4]  
Goldberg DE, 1989, GENETIC ALGORITHMS S
[5]   AUTOMATIC SELECTION OF OBJECT ENHANCEMENT OPERATOR WITH QUANTITATIVE JUSTIFICATION BASED ON FUZZY SET THEORETIC MEASURES [J].
KUNDU, MK ;
PAL, SK .
PATTERN RECOGNITION LETTERS, 1990, 11 (12) :811-829
[6]   FUZZY GEOMETRY IN IMAGE-ANALYSIS [J].
PAL, SK ;
GHOSH, A .
FUZZY SETS AND SYSTEMS, 1992, 48 (01) :23-40
[7]  
Rosefeld A., 1982, DIGITAL PICTURE PROC
[8]  
SIEDLECKI W, 1989, PATTERN RECOGN, V10, P355
[9]  
1991, 4TH P INT C GEN ALG