SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM

被引:88
作者
GOLDBERG, AV [1 ]
机构
[1] IBM CORP,ALMADEN RES CTR,ARMONK,NY 10504
关键词
SHORTEST PATHS PROBLEM; GRAPH THEORY; NETWORKS; SCALING;
D O I
10.1137/S0097539792231179
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We describe a new method for designing scaling algorithms for the single-source shortest paths problem and use this method to obtain an O(root nm log N) algorithm for the problem. (Here n and m are the number of nodes and arcs in the input network and N is essentially the absolute value of the most negative arc length; arc lengths are assumed to be integral.) This improves previous bounds for the problem. The method extends to related problems.
引用
收藏
页码:494 / 504
页数:11
相关论文
共 22 条
[1]  
[Anonymous], 1983, DATA STRUCTURES NETW, DOI DOI 10.1137/1.9781611970265
[2]  
Bellman R., 1958, Q APPL MATH, V16, P87, DOI [10.1090/qam/102435, DOI 10.1090/QAM/102435]
[3]   ON THE COMPUTATIONAL BEHAVIOR OF A POLYNOMIAL-TIME NETWORK FLOW ALGORITHM [J].
BLAND, RG ;
JENSEN, DL .
MATHEMATICAL PROGRAMMING, 1992, 54 (01) :1-39
[4]   SHORTEST-PATH FOREST WITH TOPOLOGICAL ORDERING [J].
DIAL, RB .
COMMUNICATIONS OF THE ACM, 1969, 12 (11) :632-&
[5]  
Dijkstra EW., 1959, NUMER MATH, V1, P269, DOI DOI 10.1007/BF01386390
[6]   A DECOMPOSITION THEOREM FOR PARTIALLY ORDERED SETS [J].
DILWORTH, RP .
ANNALS OF MATHEMATICS, 1950, 51 (01) :161-166
[7]  
Ford L., 1962, FLOWS NETWORKS, V71, P1059, DOI 10.2307/2311955
[8]  
FREDERICKSON GN, 1987, SIAM J COMPUT, V16, P1004, DOI 10.1137/0216064
[9]  
FREDMAN ML, 1990, ANN IEEE SYMP FOUND, P719
[10]   FIBONACCI HEAPS AND THEIR USES IN IMPROVED NETWORK OPTIMIZATION ALGORITHMS [J].
FREDMAN, ML ;
TARJAN, RE .
JOURNAL OF THE ACM, 1987, 34 (03) :596-615