ANOMALOUS DIMENSIONS AND THE RENORMALIZATION-GROUP IN A NONLINEAR DIFFUSION PROCESS

被引:128
作者
GOLDENFELD, N [1 ]
MARTIN, O [1 ]
OONO, Y [1 ]
LIU, F [1 ]
机构
[1] UNIV ILLINOIS,BECKMAN INST,URBANA,IL 61801
关键词
D O I
10.1103/PhysRevLett.64.1361
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a renormalization-group (RG) approach to the nonlinear diffusion process tu=D x2u, with D=1/2 for x2u>0 and D=(1+)/2 for x2u<0, which describes the pressure during the filtration of an elastic fluid in an elastoplastic porous medium. Our approach recovers Barenblatts long-time result that, for a localized initial pressure distribution, u(x,t)t-(+1/2)f(x/ t), where f is a scaling function and =(2e)1/2+O(2) is an anomalous dimension, which we compute perturbatively using the RG. This is the first application of the RG to a nonlinear partial differential equation in the absence of noise. © 1990 The American Physical Society.
引用
收藏
页码:1361 / 1364
页数:4
相关论文
共 23 条
  • [1] Amit DJ., 2005, FIELD THEORY RENORMA, V3rd
  • [2] Barenblatt G, 1979, SIMILARITY SELF SIMI
  • [3] BARENBLATT GI, 1969, APPL MATH MECH, V33, P836
  • [4] PATTERN SELECTION IN DENDRITIC SOLIDIFICATION
    BENJACOB, E
    GOLDENFELD, N
    KOTLIAR, BG
    LANGER, JS
    [J]. PHYSICAL REVIEW LETTERS, 1984, 53 (22) : 2110 - 2113
  • [5] BOGOLYUBOV NN, 1958, INTRO THEORY QUANTIZ, pCH8
  • [7] Bridgman P.W., 1931, DIMENSIONAL ANAL, V2nd Ed
  • [8] On physically similar systems, illustrations of the use of dimensional equations
    Buckingham, E
    [J]. PHYSICAL REVIEW, 1914, 4 (04): : 345 - 376
  • [9] SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION
    CASTAING, B
    GUNARATNE, G
    HESLOT, F
    KADANOFF, L
    LIBCHABER, A
    THOMAE, S
    WU, XZ
    ZALESKI, S
    ZANETTI, G
    [J]. JOURNAL OF FLUID MECHANICS, 1989, 204 : 1 - 30
  • [10] A DYNAMIC SCALING ASSUMPTION FOR PHASE-SEPARATION
    FURUKAWA, H
    [J]. ADVANCES IN PHYSICS, 1985, 34 (06) : 703 - 750