SINGLE-VARIABLE REALIZATION OF THE SU(1,1) SPECTRUM GENERATING ALGEBRA AND DISCRETE EIGENVALUE SPECTRA OF A CLASS OF POTENTIALS

被引:33
作者
BRAJAMANI, S
SINGH, CA
机构
[1] Dept. of Phys., Manipur Univ., Canchipur
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1990年 / 23卷 / 15期
关键词
D O I
10.1088/0305-4470/23/15/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A wide range of operators can be expressed in terms of the generators of the SU(1,1) algebra, the spectral properties of which are well known. The authors attempt to find a realisation of the algebra in its most general form and thus evolve a unified approach to the problem of finding the spectra of Hamiltonians amenable to the technique rather than taking each case separately. They extend the analysis to obtain the spectra of potentials whose coordinate dependence is implicit.
引用
收藏
页码:3421 / 3430
页数:10
相关论文
共 15 条
[1]   GROUP-THEORY APPROACH TO SCATTERING .2. THE EUCLIDEAN CONNECTION [J].
ALHASSID, Y ;
GURSEY, F ;
IACHELLO, F .
ANNALS OF PHYSICS, 1986, 167 (01) :181-200
[2]   IRREDUCIBLE UNITARY REPRESENTATIONS OF THE LORENTZ GROUP [J].
BARGMANN, V .
ANNALS OF MATHEMATICS, 1947, 48 (03) :568-640
[3]  
BARUT AO, 1987, DYNAMICAL GROUPS SPE
[4]   SEARCH FOR QUANTUM SYSTEMS WITH A GIVEN SPECTRUM-GENERATING ALGEBRA - DETAILED STUDY OF CASE OF SO2,1 [J].
CORDERO, P ;
GHIRARDI, GC .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 2 (01) :217-+
[5]   ALGEBRAIC TREATMENT OF NONRELATIVISTIC AND RELATIVISTIC QUANTUM EQUATIONS AND ITS RELATION TO THEORY OF DIFFERENTIAL EQUATIONS [J].
CORDERO, P ;
HOJMAN, S ;
FURLAN, P ;
GHIRARDI, GC .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA A, 1971, A 3 (04) :807-&
[6]   The rotation spectrum of halogen hydrogens [J].
Kratzer, A .
ZEITSCHRIFT FUR PHYSIK, 1920, 3 :289-307
[7]   DYNAMICAL ALGEBRA AND POTENTIALS [J].
LANIK, J .
NUCLEAR PHYSICS B, 1967, B 2 (02) :263-&
[8]  
Lie S, 1967, THEORIE TRANSFORMATI
[9]  
MAKUNDA N, 1967, J MATH PHYS, V8, P2210
[10]   Diatomic molecules according to the wave mechanics. II. Vibrational levels [J].
Morse, PM .
PHYSICAL REVIEW, 1929, 34 (01) :57-64