DEGENERATE NONDEGENERATE SPACETIME METRICS

被引:23
作者
MCINTOSH, CBG [1 ]
ARIANRHOD, R [1 ]
机构
[1] MONASH UNIV,DEPT MATH,CLAYTON,VIC 3168,AUSTRALIA
关键词
D O I
10.1088/0264-9381/7/9/001
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In the Petrov classification (1969) of the Weyl tensor (or spinor), the type I or (1111) case is referred to in the literature as non-degenerate; there is, however, a 'degenerate' class of type I metrics in which the four distinct principal null directions (PND) only span a 3-space at each point; the degeneracy refers to the dimension of the space of PND. This subcase is shown to exist when I3/J2)6. Metrics of the Kasner type provide an important example of the two type I cases, and an illustration of the kind of geometrical insight into the structure of spacetime metrics which is afforded by analysis of the space of PND.
引用
收藏
页码:L213 / L216
页数:4
相关论文
共 8 条
[1]  
Kramer D., 1980, EXACT SOLUTIONS EINS
[2]   THE CLASSIFICATION OF THE RICCI AND PLEBANSKI TENSORS IN GENERAL-RELATIVITY USING NEWMAN-PENROSE FORMALISM [J].
MCINTOSH, CBG ;
FOYSTER, JM ;
LUN, AWC .
JOURNAL OF MATHEMATICAL PHYSICS, 1981, 22 (11) :2620-2623
[3]  
MCINTOSH CBG, 1990, 3RD P HUNG WORKSH RE
[4]  
Penrose R., 1984, CAMBRIDGE MONOGRAPHS, V1
[5]  
Penrose R., 1986, SPINORS SPACE TIME, V1
[6]  
Petrov A Z, 1969, EINSTEIN SPACES
[7]  
PETROV AZ, 1962, RECENT DEV GENERAL R
[8]  
Plebanski J., 1964, ACTA PHYS POL, V26, P963