CAN LOCALLY HADAMARD QUANTUM STATES HAVE NON-LOCAL SINGULARITIES

被引:17
作者
GONNELLA, G [1 ]
KAY, BS [1 ]
机构
[1] UNIV ZURICH,INST THEORET PHYS,CH-8001 ZURICH,SWITZERLAND
关键词
D O I
10.1088/0264-9381/6/10/013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:1445 / 1454
页数:10
相关论文
共 15 条
[1]   VACUUM STATES IN DE-SITTER SPACE [J].
ALLEN, B .
PHYSICAL REVIEW D, 1985, 32 (12) :3136-3149
[2]  
Birrell N. D., 1982, Quantum fields in curved space
[3]   RADIATION DAMPING IN A GRAVITATIONAL FIELD [J].
DEWITT, BS ;
BREHME, RW .
ANNALS OF PHYSICS, 1960, 9 (02) :220-259
[4]   ALGEBRAS OF LOCAL OBSERVABLES ON A MANIFOLD [J].
DIMOCK, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 77 (03) :219-228
[5]   GENERALLY COVARIANT QUANTUM-FIELD THEORY AND SCALING LIMITS [J].
FREDENHAGEN, K ;
HAAG, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :91-115
[6]   SINGULARITY STRUCTURE OF THE 2-POINT FUNCTION IN QUANTUM-FIELD THEORY IN CURVED SPACETIME .2. [J].
FULLING, SA ;
NARCOWICH, FJ ;
WALD, RM .
ANNALS OF PHYSICS, 1981, 136 (02) :243-272
[7]   SINGULARITY STRUCTURE OF 2-POINT FUNCTION IN QUANTUM FIELD-THEORY IN CURVED SPACETIME [J].
FULLING, SA ;
SWEENY, M ;
WALD, RM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 63 (03) :257-264
[8]   ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY [J].
HAAG, R ;
KASTLER, D .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) :848-&
[9]   ON QUANTUM-FIELD THEORY IN GRAVITATIONAL BACKGROUND [J].
HAAG, R ;
NARNHOFER, H ;
STEIN, U .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :219-238
[10]   CASIMIR EFFECT IN QUANTUM FIELD-THEORY [J].
KAY, BS .
PHYSICAL REVIEW D, 1979, 20 (12) :3052-3062