TRANSITION TO TURBULENCE IN A DISCRETE GINZBURG-LANDAU MODEL

被引:32
作者
BOHR, T [1 ]
PEDERSEN, AW [1 ]
JENSEN, MH [1 ]
机构
[1] NORDITA, DK-2100 COPENHAGEN, DENMARK
来源
PHYSICAL REVIEW A | 1990年 / 42卷 / 06期
关键词
D O I
10.1103/PhysRevA.42.3626
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a numerical study of the onset of turbulence in a discretized version of the complex Ginzburg-Landau equation. The transition point is determined by computing Lyapunov exponents, which show a first-order transition at a parameter value 1 below the linear stability threshold for the uniform state. On further decreasing the parameter, the finite-time Lyapunov exponent remains positive only up to a characteristic transient time, after which the vortices get entangled and the asymptotic Lyapunov exponents become zero. The finite-time exponent goes to zero at c<1 as a power law. © 1990 The American Physical Society.
引用
收藏
页码:3626 / 3629
页数:4
相关论文
共 19 条
  • [1] [Anonymous], PHASE TRANSITIONS CR
  • [2] [Anonymous], SOV PHYS USP
  • [3] BODENSCHATZ E, 1989, THESIS U BAYREUTH
  • [4] BOHR T, 1990, IN PRESS P C NONLINE
  • [5] BOHR T, 1990, NEW TRENDS NONLINEAR
  • [6] BENJAMIN-FEIR TURBULENCE IN CONVECTIVE BINARY FLUID MIXTURES
    BRAND, HR
    LOMDAHL, PS
    NEWELL, AC
    [J]. PHYSICA D, 1986, 23 (1-3): : 345 - 361
  • [7] DEFECT-MEDIATED TURBULENCE
    COULLET, P
    GIL, L
    LEGA, J
    [J]. PHYSICAL REVIEW LETTERS, 1989, 62 (14) : 1619 - 1622
  • [8] ELPHICK C, UNPUB
  • [9] GAPONOVGREKHOV AV, UNPUB
  • [10] KOSTERLITZ JM, 1982, NONLINEAR PHENOMENA, P397