STOCHASTIC MODELS FOR MANY-BODY SYSTEMS .2. FINITE SYSTEMS AND STATISTICAL NONEQUILIBRIUM

被引:22
作者
KRAICHNAN, RH
机构
关键词
D O I
10.1063/1.1724249
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:496 / &
相关论文
共 9 条
[1]  
[Anonymous], 1960, SOV PHYS USPEKHI, DOI [DOI 10.1070/PU1960V003N03ABEH003275, 10.1070/pu1960v003n03abeh003275]
[2]   UN DEVELOPPEMENT DU POTENTIEL DE GIBBS DUN SYSTEME QUANTIQUE COMPOSE DUN GRAND NOMBRE DE PARTICULES [J].
BLOCH, C ;
DEDOMINICIS, C .
NUCLEAR PHYSICS, 1958, 7 (05) :459-479
[3]   DYNAMICS OF NONLINEAR STOCHASTIC SYSTEMS [J].
KRAICHNAN, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1961, 2 (01) :124-&
[4]   STATISTICAL MECHANICS OF COUPLED BOSONS IN THE HEISENBERG REPRESENTATIONS [J].
KRAICHNAN, RH .
PHYSICAL REVIEW, 1958, 112 (04) :1054-1055
[7]   THEORY OF MANY-PARTICLE SYSTEMS .1. [J].
MARTIN, PC ;
SCHWINGER, J .
PHYSICAL REVIEW, 1959, 115 (06) :1342-1373
[8]   APPROACH TO EQUILIBRIUM OF A LARGE FERMION SYSTEM [J].
NISHIKAWA, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1960, 15 (01) :78-92
[9]  
PEIRLS RE, 1952, P ROY SOC LONDON A, V214, P143