Spatial clustering of summer temperature maxima from the CNRM-CM5 climate model ensembles & E-OBS over Europe

被引:31
作者
Bador, Margot [1 ]
Naveau, Philippe [2 ]
Gilleland, Eric [3 ]
Castella, Merce [4 ]
Arivelo, Tatiana [5 ]
机构
[1] CNRS, CERFACS, Climate Modelling & Global Change Team, Toulouse, France
[2] CNRS CEA UVSQ, Lab Sci Climat & Environm, Gif Sur Yvette, France
[3] Natl Ctr Atmospher Res, Res Applicat Lab, Boulder, CO 80307 USA
[4] Univ Rovira & Virgili, Dept Geog, Ctr Climate Change, Tortosa, Spain
[5] United Nations Econ Commiss Africa, African Climate Policy Ctr, Addis Ababa, Ethiopia
来源
WEATHER AND CLIMATE EXTREMES | 2015年 / 9卷
基金
美国国家科学基金会;
关键词
Spatial clustering; Climate extreme; Data ensemble; Multivariate extreme value theory;
D O I
10.1016/j.wace.2015.05.003
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Reducing the dimensionality of the complex spatio-temporal variables associated with climate modeling, especially ensembles of climate models, is a challenging and important objective. For studies of detection and attribution, it is especially important to maintain information related to the extreme values of the atmospheric processes. Typical methods for data reduction involve summarizing climate model output information through means and variances, which does not preserve any information about the extremes. In order to help solve this challenge, a dependence summary measure appropriate for extreme values must be inferred. Here, we adapt one such measure from a recent study to a larger domain with a different variable and gridded data from observations and climate model ensembles, i.e. E-OBS observations and the CNRM-CM5 model. The handling of such ensembles of data is proposed, as well as a comparison of the spatial clusterings between two different ensembles, here a present-day and a future ensemble of climate simulations. This method yields valid information concerning extremes, while greatly reducing the data set. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:17 / 24
页数:8
相关论文
共 26 条
[1]  
[Anonymous], 2004, THEORY APPL
[2]   Clustering of Maxima: Spatial Dependencies among Heavy Rainfall in France [J].
Bernard, Elsa ;
Naveau, Philippe ;
Vrac, Mathieu ;
Mestre, Olivier .
JOURNAL OF CLIMATE, 2013, 26 (20) :7929-7937
[3]  
Coles S., 2001, SPRINGER SERIES STAT, DOI [10.1007/978-1-4471-3675-0, DOI 10.1007/978-1-4471-3675-0]
[4]  
Cooley D., 2006, LECT NOTES STAT, V187, P373, DOI [DOI 10.1007/0-387-36062-X_17, DOI 10.1007/0-387-36062-X]
[5]  
deHaan L, 2006, SPRING S OPERAT RES, DOI 10.1007/0-387-34471-3
[6]  
Fougeres AL, 2004, MONOGR STAT APPL PRO, V99, P373
[7]   Climate Drift in the CMIP5 Models [J].
Gupta, Alexander Sen ;
Jourdain, Nicolas C. ;
Brown, Jaclyn N. ;
Monselesan, Didier .
JOURNAL OF CLIMATE, 2013, 26 (21) :8597-8615
[8]  
Hurrell J., 2003, GEOPHYS MONOGRAPH SE, V134
[9]   Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations [J].
Kharin, Viatcheslav V. ;
Zwiers, Francis W. ;
Zhang, Xuebin ;
Hegerl, Gabriele C. .
JOURNAL OF CLIMATE, 2007, 20 (08) :1419-1444
[10]   Modelling pairwise dependence of maxima in space [J].
Naveau, Philippe ;
Guillou, Armelle ;
Cooley, Daniel ;
Diebolt, Jean .
BIOMETRIKA, 2009, 96 (01) :1-17