STANDARD ALGEBRAS

被引:15
作者
SCHAFER, RD
机构
[1] Massachusetts Institute Of Technology, Cambridge, MA
关键词
D O I
10.2140/pjm.1969.29.203
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1948 A. A. Albert defined a standard algebra S by the identities (x, y, z) + (z, x, y) — (x, z, y) = 0 and (x, y, wz) + O, y, xz) + (z, y, wx) = 0. Standard algebras include all associative algebras and commutative Jordan algebras. The radical 9 of any finite-dimensional standard algebra ?! is its maximal nilpotent ideal. It is known that any semisimple standard algebra is a direct sum of simple ideals, and that any simple standard algebra is either associative or a commutative Jordan algebra.In this paper we study Peirce decompositions and derivations of standard algebras.We prove the Wedderburn principal theorem for standard algebras of characteristic 2 (announced in 1950 by A. J. Penico for characteristic 0): if For standard algebras of characteristic0 we prove analogues of the Malcev-Harish-Chandra theorem and the first Whitehead lemma, and we determine when the derivation algebra of S is semisimple. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:203 / &
相关论文
共 18 条
[1]   POWER-ASSOCIATIVE RINGS [J].
ALBERT, AA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1948, 64 (NOV) :552-593
[2]  
BRAUN H, 1966, JORDAN ALGEBREN
[3]  
Harris B, 1959, PAC J MATH, V9, P495, DOI 10.2140/pjm.1959.9.495
[4]   Semi simple algebras and generalized derivations [J].
Hochschild, G .
AMERICAN JOURNAL OF MATHEMATICS, 1942, 64 :677-694
[5]   GENERAL REPRESENTATION THEORY OF JORDAN ALGEBRAS [J].
JACOBSON, N .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 70 (MAY) :509-530
[6]  
JACOBSON N, TO BE PUBLISHED
[7]   ON HOMOGENEOUS ALGEBRAS [J].
KOECHER, M .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 72 (03) :347-&
[9]   THE WEDDERBURN PRINCIPAL THEOREM FOR JORDAN ALGEBRAS [J].
PENICO, AJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1951, 70 (MAY) :404-420
[10]  
PENICO AJ, 1952, 1950 P INT C MATH CA, V1, P320