DYNAMICS OF DEFORMABLE-BODIES WITH VARIABLE MEMBRANE

被引:12
作者
EDWARDS, SF [1 ]
SCHWARTZ, M [1 ]
机构
[1] TEL AVIV UNIV,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,SCH PHYS & ASTRON,IL-69978 TEL AVIV,ISRAEL
来源
PHYSICA A | 1990年 / 167卷 / 03期
关键词
D O I
10.1016/0378-4371(90)90278-Z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamical evolution of a system of closed membranes coupled to a fluid. The description of a membrane consists of the mathematical surface it occupies and of the mass distribution of the membrane material on that surface. We find two possible phases, an inflated and a deflated phase. For the inflated phase we study decay rates to equilibrium, deformation and non-uniformity in shear flow and the effect on viscosity due to a small density of membranes in the fluid. We consider also the slow non-linear mass redistribution in the plane. © 1990.
引用
收藏
页码:595 / 610
页数:16
相关论文
共 5 条
[1]   A new determination of the molecular dimensions (vol 19, pg 289, 1906) [J].
Einstein, A .
ANNALEN DER PHYSIK, 1911, 34 (03) :591-592
[2]  
PELETIER LA, 1974, ARCH RATION MECH AN, V56, P183, DOI 10.1007/BF00248140
[3]   ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF POROUS MEDIA EQUATION [J].
PELETIER, LA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 21 (04) :542-&
[4]   NON-LINEAR DIFFUSION IN A FINITE MASS MEDIUM [J].
ROSENAU, P ;
KAMIN, S .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (01) :113-127
[5]   FLOW OF DEFORMABLE-BODIES [J].
SCHWARTZ, M ;
EDWARDS, SF .
PHYSICA A, 1988, 153 (03) :355-371