IMPROVING THE VARIATIONAL APPROACH TO PATH-INTEGRALS

被引:18
作者
KLEINERT, H
机构
[1] Institut für Theoretische Physik, Freie Universität Berlin, W-1000 Berlin 33
关键词
D O I
10.1016/0370-2693(92)90063-A
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We improve the Feynman-Kleinert variational approach to euclidean path integrals rendering it much more powerful in the low-temperature regime. The new power is illustrated by an application to the anharmonic oscillator with a potential V(x) = 1/2m2x2 + 1/4gx4, where it yields not only a better approximation to the low-temperature part of the partition function but delivers, in addition, all bound-state energies uniformly well for any principal quantum number n and coupling constant g.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 29 条
[1]  
CASWELL WE, 1979, ANN PHYS-NEW YORK, V123, P153, DOI 10.1016/0003-4916(79)90269-0
[2]   THERMODYNAMIC PROPERTIES OF A QUANTUM CHAIN WITH NEAREST-NEIGHBOR ANHARMONIC INTERACTIONS [J].
CUCCOLI, A ;
TOGNETTI, V ;
VAIA, R .
PHYSICAL REVIEW B, 1990, 41 (13) :9588-9591
[3]  
CUCCOLI A, IN PRESS PHYS REV B
[4]  
CUCCOLI A, 1991, PHYS REV A, V44, P2743
[5]   EFFECTIVE CLASSICAL PARTITION-FUNCTIONS [J].
FEYNMAN, RP ;
KLEINERT, H .
PHYSICAL REVIEW A, 1986, 34 (06) :5080-5084
[6]  
FEYNMAN RP, 1972, STATISTICAL MECHANIC
[7]   QUANTUM CORRECTIONS TO THE THERMODYNAMICS OF NONLINEAR-SYSTEMS [J].
GIACHETTI, R ;
TOGNETTI, V .
PHYSICAL REVIEW B, 1986, 33 (11) :7647-7658
[8]   FINITE-TEMPERATURE RENORMALIZATION OF SINE-GORDON FIELD BY VARIATIONAL METHOD [J].
GIACHETTI, R ;
TOGNETTI, V ;
VAIA, R .
PHYSICAL REVIEW A, 1988, 37 (06) :2165-2172
[9]   VARIATIONAL APPROACH TO QUANTUM STATISTICAL-MECHANICS OF NONLINEAR-SYSTEMS WITH APPLICATION TO SINE-GORDON CHAINS [J].
GIACHETTI, R ;
TOGNETTI, V .
PHYSICAL REVIEW LETTERS, 1985, 55 (09) :912-915
[10]   EFFECTIVE POTENTIAL AND FINITE-TEMPERATURE RENORMALIZATION OF THE PHI-4 CHAIN [J].
GIACHETTI, R ;
TOGNETTI, V ;
VAIA, R .
PHYSICAL REVIEW A, 1988, 38 (03) :1521-1526