AN UPPER BOUND ON THE DIAMETER OF A GRAPH FROM EIGENVALUES ASSOCIATED WITH ITS LAPLACIAN

被引:57
作者
CHUNG, FRK [1 ]
FABER, V [1 ]
MANTEUFFEL, TA [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
关键词
LAPLACIAN; DIAMETER; EIGENVALUES;
D O I
10.1137/S0895480191217776
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors give a new upper bound for the diameter D(G) of a graph G in terms of the eigenvalues of the Laplacian of G. The bound is D(G) less-than-or-equal-to [cosh-1 (n - 1)/cosh-1 (lambda(n) + lambda2/lambda(n) - lambda2)] + 1. where 0 less-than-or-equal-to lambda2 less-than-or-equal-to ... less-than-or-equal-to lambda(n) are the eigenvalues of the Laplacian of G and where [] is the floor function.
引用
收藏
页码:443 / 457
页数:15
相关论文
共 17 条
[1]   LAMBDA-1, ISOPERIMETRIC-INEQUALITIES FOR GRAPHS, AND SUPERCONCENTRATORS [J].
ALON, N ;
MILMAN, VD .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (01) :73-88
[3]  
Chung F.R.K., 1989, J AM MATH SOC, V2, P187, DOI DOI 10.2307/1990973.MR965008
[4]  
Dongarra J. J., 1979, LINPACK USERS GUIDE
[5]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE-GRADIENT METHOD [J].
FABER, V ;
MANTEUFFEL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) :352-362
[6]   CHEBYSHEV POLYNOMIALS ARE NOT ALWAYS OPTIMAL [J].
FISCHER, B ;
FREUND, R .
JOURNAL OF APPROXIMATION THEORY, 1991, 65 (03) :261-272
[7]   ON THE CONSTRAINED CHEBYSHEV-APPROXIMATION PROBLEM ON ELLIPSES [J].
FISCHER, B ;
FREUND, R .
JOURNAL OF APPROXIMATION THEORY, 1990, 62 (03) :297-315
[8]  
Golub G.H., 1983, MATRIX COMPUTATIONS
[9]   RAMANUJAN GRAPHS [J].
LUBOTZKY, A ;
PHILLIPS, R ;
SARNAK, P .
COMBINATORICA, 1988, 8 (03) :261-277
[10]   TCHEBYCHEV ITERATION FOR NONSYMMETRIC LINEAR-SYSTEMS [J].
MANTEUFFEL, TA .
NUMERISCHE MATHEMATIK, 1977, 28 (03) :307-327