The actin cytoskeleton is involved in the positioning of statoliths in tip growing Chara rhizoids. The balance between the acropetally acting gravity force and the basipetally acting net outcome of cytoskeletal force results in the dynamically stable position of the statoliths 10-30 mum above the cell tip. A change of the direction and/or the amount of one of these forces in a vertically growing rhizoid results in a dislocation of statoliths. Centrifugation was used as a tool to study the characteristics of the interaction between statoliths and microfilaments (MFs). Acropetal and basipetal accelerations up to 6.5 g were applied with the newly constructed slow-rotating-centrifuge-microscope (NIZEMI). Higher accelerations were applied by means of a conventional centrifuge, namely acropetally 10-200 g and basipetally 10-70 g. During acropetal accelerations (1.4-6 g), statoliths were displaced to a new stable position nearer to the cell vertex (12-6.5 mum distance to the apical cell wall, respectively), but they did not sediment on the apical cell wall. The original position of the statoliths was reestablished within 30 s after centrifugation. Sedimentation of statoliths and reduction of the growth rates of the rhizoids were observed during acropetal accelerations higher than 50 g. When not only the amount but also the direction of the acceleration were changed in comparison to the natural condition, i.e., during basipetal accelerations (1.0-6.5 g), statoliths were displaced into the subapical zone (up to 90 mum distance to the apical cell wall); after 15-20 min the retransport of statoliths to the apex against the direction of acceleration started. Finally, the natural position in the tip was reestablished against the direction of continuous centrifugation. Retransport was observed during accelerations up to 70 g. Under the 1 g condition that followed the retransported statoliths showed an up to 5-fold increase in sedimentation time onto the lateral cell wall when placed horizontally. During basipetal centrifugations greater-than-or-equal-to 70 g all statoliths entered the basal vacuolar part of the rhizoid where they were cotransported in the streaming cytoplasm. It is concluded that the MF system is able to adapt to higher mass accelerations and that the MF system of the polarly growing rhizoid is polarly organized.