TUNABLE INTEGRATION SCHEME FOR THE FINITE-ELEMENT METHOD

被引:17
作者
BONDESON, A
FU, GY
机构
[1] Centre de Recherches en Physique des Plasmas, Association Euratom - Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, CH-1007 Lausanne
关键词
D O I
10.1016/0010-4655(91)90065-S
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A discretization method is proposed where a tunable integration scheme is applied to the finite element method (FEM). The method is characterized by one continuous parameter, p. A theoretical error analysis is given and three different eigenvalue problems are used as test cases: a simple example with constant coefficients and two model problems from ideal and resistive magnetohydrodynamics. It is shown that, for judicious choices of p, the tunable integration method clearly improves the convergence of the strict FEM. The sensitivity to the choice of integration parameter is discussed.
引用
收藏
页码:167 / 176
页数:10
相关论文
共 13 条
[1]   EIGENMODES OF CYLINDRICAL PLASMA USING FINITE-ELEMENT METHOD [J].
APPERT, K ;
BERGER, D ;
GRUBER, R ;
TROYON, F .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1974, 25 (02) :229-240
[2]  
BONDESON A, 1990, CONTROLLED FUSION 2, P906
[3]  
COOPER WA, 1990, THEORY FUSION PLASMA, P665
[4]   RESISTIVE INSTABILITIES IN A DIFFUSE LINEAR PINCH [J].
COPPI, B ;
GREENE, JM ;
JOHNSON, JL .
NUCLEAR FUSION, 1966, 6 (02) :101-&
[5]   METHODS FOR NUMERICAL-SIMULATION OF IDEAL MHD STABILITY OF AXISYMMETRICAL PLASMAS [J].
DEGTYAREV, LM ;
MEDVEDEV, SY .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 43 (01) :29-56
[6]   ERATO STABILITY CODE [J].
GRUBER, R ;
TROYON, F ;
BERGER, D ;
BERNARD, LC ;
ROUSSET, S ;
SCHREIBER, R ;
KERNER, W ;
SCHNEIDER, W ;
ROBERTS, KV .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 21 (03) :323-371
[7]  
Hughes T. J. R., 1987, FINITE ELEMENT METHO
[8]   ON SPECTRAL POLLUTION [J].
LLOBET, X ;
APPERT, K ;
BONDESON, A ;
VACLAVIK, J .
COMPUTER PHYSICS COMMUNICATIONS, 1990, 59 (02) :199-216
[10]   HYDROMAGNETIC STABILITY OF A DIFFUSE LINEAR PINCH [J].
NEWCOMB, WA .
ANNALS OF PHYSICS, 1960, 10 (02) :232-267