THE DYNAMIC-PROGRAMMING EQUATION FOR THE TIME-OPTIMAL CONTROL PROBLEM IN INFINITE DIMENSIONS

被引:16
作者
BARBU, V
机构
[1] Univ of Iasi, Iasi
基金
日本学术振兴会;
关键词
TIME-OPTIMAL CONTROL PROBLEM; MINIMAL TIME FUNCTION; HAMILTON-JACOBI EQUATION; VISCOSITY SOLUTION;
D O I
10.1137/0329024
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The existence and uniqueness of a viscosity solution for the Bellman equation associated with the time-optimal control problem for a semilinear evolution equation in Hilbert space is provided. Applications to time-optimal control problems governed by parabolic equations are given.
引用
收藏
页码:445 / 456
页数:12
相关论文
共 16 条
[1]  
Barbu, 1976, NONLINEAR SEMIGROUPS
[2]  
BARBU V, 1987, LECTURE NOTES CONTRO, V97, P15
[3]   A BOUNDARY-VALUE PROBLEM FOR THE MINIMUM-TIME FUNCTION [J].
BARDI, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (04) :776-785
[4]  
Brezis H., 1973, MATH STUDIES, V5
[6]  
CARJA O, 1985, B UN MATH ITAL, V6, P293
[7]  
CRANDALL MG, 1987, CR ACAD SCI I-MATH, V305, P233
[8]  
CRANDALL MG, 1987, J MATH SOC JPN, V39, P581
[9]   VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS [J].
CRANDALL, MG ;
LIONS, PL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 277 (01) :1-42
[10]  
CRANDALL MG, 1989, J FUNCT ANAL, V87