STRUCTURAL CONDITIONS FOR PERTURBATION ANALYSIS DERIVATIVE ESTIMATION - FINITE-TIME PERFORMANCE INDEXES

被引:28
作者
GLASSERMAN, P [1 ]
机构
[1] AT&T BELL LABS,DEPT OPERAT RES,TECH STAFF,MURRAY HILL,NJ 07974
关键词
QUEUES - SAMPLE PATH ANALYSIS AND OPTIMIZATION; SIMULATION - GRADIENT ESTIMATION TECHNIQUES;
D O I
10.1287/opre.39.5.724
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
In recent years, there has been a surge of research into methods for estimating derivatives of performance measures from sample paths of stochastic systems. In the case of queueing systems, typical performance measures are mean queue lengths, throughputs, etc., and the derivatives estimated are with respect to system parameters, such as parameters of service and interarrival time distributions. Derivative estimates potentially offer a general means of optimizing performance, and are useful in sensitivity analysis. This paper concerns one approach to derivative estimation, known as infinitesimal perturbation analysis. We first develop a general framework for these types of estimates, then give simple sufficient conditions for them to be unbiased. The key to our results is identifying conditions under which certain finite-horizon performance measures are almost surely continuous functions of the parameter of differentiation throughout an interval. The sufficient conditions we introduce are formulated in the setting of generalized semi-Markov processes, but translate into readily verifiable conditions for queueing systems. These results substantially extend the domain of problems in which infinitesimal perturbation analysis is provably applicable.
引用
收藏
页码:724 / 738
页数:15
相关论文
共 18 条
[1]   A SAMPLE PERFORMANCE-FUNCTION OF CLOSED JACKSON QUEUING-NETWORKS [J].
CAO, XR .
OPERATIONS RESEARCH, 1988, 36 (01) :128-136
[2]  
DIEUDONNE J, 1960, F MODERN ANAL
[3]   INFINITESIMAL PERTURBATION ANALYSIS OF A BIRTH AND DEATH PROCESS [J].
GLASSERMAN, P .
OPERATIONS RESEARCH LETTERS, 1988, 7 (01) :43-49
[4]  
GLASSERMAN P, 1990, IN PRESS J ASS COMPU
[5]  
GLASSERMAN P, 1990, IN PRESS PROBABILITY
[6]  
GLASSERMAN P, 1990, IN PRESS MATH OPNS R
[7]  
Glynn P. W., 1988, Queueing Systems Theory and Applications, V3, P221, DOI 10.1007/BF01161216
[8]  
GLYNN PW, 1986, WIN P SIM C GLYNN, P350
[9]   CONVERGENCE PROPERTIES OF INFINITESIMAL PERTURBATION ANALYSIS ESTIMATES [J].
HEIDELBERGER, P ;
CAO, XR ;
ZAZANIS, MA ;
SURI, R .
MANAGEMENT SCIENCE, 1988, 34 (11) :1281-1302
[10]   PERTURBATION ANALYSIS AND OPTIMIZATION OF QUEUING-NETWORKS [J].
HO, YC ;
CAO, X .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1983, 40 (04) :559-582