BEYOND ALL ORDERS - SINGULAR PERTURBATIONS IN A MAPPING

被引:23
作者
AMICK, C [1 ]
CHING, ESC [1 ]
KADANOFF, LP [1 ]
ROMKEDAR, V [1 ]
机构
[1] UNIV CHICAGO,DEPT MATH,COMPUTAT & APPL MATH PROGRAM,CHICAGO,IL 60637
关键词
BREAK-UP OF HETEROCLINIC CONNECTION; EXPONENTIALLY SMALL SPLITTING OF SEPARATRICES; SINGULAR PERTURBATION;
D O I
10.1007/BF02429851
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a family of q-dimensional (q > 1), volume-preserving maps depending on a small parameter-epsilon. As epsilon --> 0+ these maps asymptote to flows which attain a heteroclinic connection. We show that for small epsilon the heteroclinic connection breaks up and that the splitting between its components scales with epsilon like epsilon(gamma) exp[-beta/epsilon]. We estimate beta using the singularities of the epsilon --> 0+ heteroclinic orbit in the complex plane. We then estimate gamma using linearization about orbits in the complex plane. These estimates, as well as the assertions regarding the behavior of the functions in the complex plane, are supported by our numerical calculations.
引用
收藏
页码:9 / 67
页数:59
相关论文
共 22 条
[1]   ON HOMOCLINIC STRUCTURE AND NUMERICALLY INDUCED CHAOS FOR THE NONLINEAR SCHRODINGER-EQUATION [J].
ABLOWITZ, MJ ;
HERBST, BM .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1990, 50 (02) :339-351
[2]   A SINGULAR PERTURBATION PROBLEM IN NEEDLE CRYSTALS [J].
AMICK, CJ ;
MCLEOD, JB .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 109 (02) :139-171
[3]  
Bender Carl, 1999, ADV MATH METHODS SCI, V1
[4]   QUASI-PERIODIC ROUTE TO CHAOS IN A NEAR-INTEGRABLE PDE - HOMOCLINIC CROSSINGS [J].
BISHOP, AR ;
MCLAUGHLIN, DW ;
FOREST, MG ;
OVERMAN, EA .
PHYSICS LETTERS A, 1988, 127 (6-7) :335-340
[5]   PASSIVE SCALARS, 3-DIMENSIONAL VOLUME-PRESERVING MAPS, AND CHAOS [J].
FEINGOLD, M ;
KADANOFF, LP ;
PIRO, O .
JOURNAL OF STATISTICAL PHYSICS, 1988, 50 (3-4) :529-565
[6]   THE SPLITTING OF SEPARATRICES FOR ANALYTIC DIFFEOMORPHISMS [J].
FONTICH, E ;
SIMO, C .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1990, 10 :295-318
[7]  
Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2
[8]  
Hille E., 1977, ANAL FUNCTION THEORY, VII
[9]  
HIRSCH M, 1977, SPRINGER LECTURE NOT, V583
[10]   CHAOTIC NUMERICS FROM AN INTEGRABLE HAMILTONIAN SYSTEM [J].
HOCKETT, K .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (01) :271-281