ANALYSIS OF VELOCITY DIFFUSION OF ELECTRONS WITH VLASOV-POISSON SIMULATIONS

被引:6
作者
BERNDTSON, JT [1 ]
HEIKKINEN, JA [1 ]
KARTTUNEN, SJ [1 ]
PATTIKANGAS, TJH [1 ]
SALOMAA, RRE [1 ]
机构
[1] TECH RES CTR FINLAND,NUCL ENGN LAB,SF-02151 ESPOO,FINLAND
关键词
D O I
10.1088/0741-3335/36/1/005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Wave-induced velocity diffusion is studied with a one-dimensional relativistic Vlasov-Poisson code. The diffusion coefficient is determined by following test electrons in the self-consistent electrostatic field formed by a narrow spectrum of electron plasma waves. The diffusion coefficient is found to be slightly larger than the quasilinear value at intermediate values of Chirikov's overlap parameter. The largest deviation is about 20-30%. At higher values of the overlap parameter, the diffusion is slower than quasilinear for a small number of field modes, but faster than quasilinear for a large number of the modes.
引用
收藏
页码:57 / 71
页数:15
相关论文
共 27 条
[1]   RECONSIDERATION OF QUASILINEAR THEORY [J].
ADAM, JC ;
LAVAL, G ;
PESME, D .
PHYSICAL REVIEW LETTERS, 1979, 43 (22) :1671-1675
[2]  
BERNDTSON JT, 1992, TKKFB137 HELS U TECH, P77
[3]   QUASI-LINEAR THEORY OF PLASMA WAVES [J].
BERNSTEIN, IB ;
ENGELMANN, F .
PHYSICS OF FLUIDS, 1966, 9 (05) :937-+
[4]  
BERS A, 1991, P IAEA TECHNICAL COM, P3
[5]   SIMULATION-MODEL FOR LOWER HYBRID CURRENT DRIVE [J].
BONOLI, PT ;
ENGLADE, RC .
PHYSICS OF FLUIDS, 1986, 29 (09) :2937-2950
[6]   THEORY OF 2-POINT CORRELATION-FUNCTION IN A VLASOV-PLASMA [J].
BOUTROSGHALI, T ;
DUPREE, TH .
PHYSICS OF FLUIDS, 1981, 24 (10) :1839-1858
[7]   NONQUASILINEAR DIFFUSION FAR FROM THE CHAOTIC THRESHOLD [J].
CARY, JR ;
ESCANDE, DF ;
VERGA, AD .
PHYSICAL REVIEW LETTERS, 1990, 65 (25) :3132-3135
[8]   ENHANCEMENT OF THE VELOCITY DIFFUSION IN LONGITUDINAL PLASMA TURBULENCE [J].
CARY, JR ;
DOXAS, I ;
ESCANDE, DF ;
VERGA, AD .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1992, 4 (07) :2062-2069
[9]   INTEGRATION OF VLASOV EQUATION IN CONFIGURATION SPACE [J].
CHENG, CZ ;
KNORR, G .
JOURNAL OF COMPUTATIONAL PHYSICS, 1976, 22 (03) :330-351
[10]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379