MOTION OF VORTEX LINES IN THE GINZBURG-LANDAU MODEL

被引:59
作者
PISMEN, LM [1 ]
RUBINSTEIN, J [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL, DEPT MATH, IL-32000 HAIFA, ISRAEL
关键词
D O I
10.1016/0167-2789(91)90035-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Equations of motion for vortex lines in the Ginzburg-Landau theory are derived. We construct asymptotic approximations for the complex order parameter which are valid in the core region and in the far field. Using the method of matched asymptotic expansions we show that, to leading order, the line moves in the binormal direction with a curvature-dependent velocity. We also consider the contribution of remote parts of the line, interaction between several vortex lines and interaction with external fields.
引用
收藏
页码:353 / 360
页数:8
相关论文
共 15 条
[1]  
BATCHELOR GK, 1967, INTRO FLUID MECHANIC
[2]   STRUCTURE AND DYNAMICS OF DISLOCATIONS IN ANISOTROPIC PATTERN-FORMING SYSTEMS [J].
BODENSCHATZ, E ;
PESCH, W ;
KRAMER, L .
PHYSICA D, 1988, 32 (01) :135-145
[3]  
Glaberson W. I., 1986, PROGR LOW TEMPERATUR, VIX
[4]   SOLITON ON A VORTEX FILAMENT [J].
HASIMOTO, H .
JOURNAL OF FLUID MECHANICS, 1972, 51 (FEB8) :477-&
[5]  
KELVIN, 1910, MATH PHYSICAL PAPERS, V4
[6]  
Kuramoto Y., 1984, CHEM OSCILLATIONS WA
[7]  
Landau L. D., 1980, STAT PHYS THEORY CON
[8]   TOPOLOGICAL THEORY OF DEFECTS IN ORDERED MEDIA [J].
MERMIN, ND .
REVIEWS OF MODERN PHYSICS, 1979, 51 (03) :591-648
[9]   VORTICES IN COMPLEX SCALAR FIELDS [J].
NEU, JC .
PHYSICA D, 1990, 43 (2-3) :385-406
[10]   STABILITY OF PERIODIC PLANE-WAVES [J].
NEWTON, PK ;
KELLER, JB .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (05) :959-964