MINIMIZATION OF A QUASI-CONCAVE FUNCTION OVER AN EFFICIENT SET

被引:46
作者
BOLINTINEANU, S
机构
[1] LA TROBE UNIV,BUNDOORA,VIC 3083,AUSTRALIA
[2] UNIV MELBOURNE,PARKVILLE,VIC 3052,AUSTRALIA
关键词
MULTIOBJECTIVE PROGRAMMING; EFFICIENCY; WEAK-EFFICIENCY; NONLINEAR PROGRAMMING; NONCONVEX PROGRAMMING;
D O I
10.1007/BF01582141
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The nonconvex programming problem of minimizing a quasi-concave function over an efficient (or weakly efficient) set of a multiobjective linear program is studied. A cutting plane algorithm which finds an approximate optimal solution in a finite number of steps is developed. For the particular ''all linear'' case the algorithm performs better, finding an optimal solution in a finite time, and being more easily implemented.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 22 条
[1]   AN ALGORITHM FOR OPTIMIZING OVER THE WEALKY-EFFICIENT SET [J].
BENSON, HP .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1986, 25 (02) :192-199
[2]   OPTIMIZATION OVER THE EFFICIENT SET [J].
BENSON, HP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1984, 98 (02) :562-580
[3]  
BENSON HP, IN PRESS J OPTIMIZAT
[4]  
Benson HP, 1990, J GLOBAL OPTIM, V1, P83, DOI 10.1007/BF00120667
[5]  
BOLINTINEANU S, IN PRESS J MATH ANAL
[6]  
CRAVEN BD, 1991, RECENT DEV MATH PROG
[7]  
Dauer J. P., 1991, ZOR, Methods and Models of Operations Research, V35, P185, DOI 10.1007/BF01415906
[8]   FINDING ALL EFFICIENT EXTREME POINTS FOR MULTIPLE OBJECTIVE LINEAR PROGRAMS [J].
ECKER, JG ;
KOUADA, IA .
MATHEMATICAL PROGRAMMING, 1978, 14 (02) :249-261
[9]  
Falk J. E., 1976, Mathematics of Operations Research, V1, P251, DOI 10.1287/moor.1.3.251
[10]  
FORGO F, 1988, NONCONVEX PROGRAMMIN