SOME COMPLEXITY RESULTS ABOUT THRESHOLD GRAPHS

被引:10
作者
MARGOT, F
机构
[1] Département de Mathématiques, EPF Lausanne
关键词
THRESHOLD GRAPH; COMPLEXITY; CYCLIC SCHEDULING;
D O I
10.1016/0166-218X(94)90214-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of determining whether a graph G contains a threshold subgraph containing at least h edges is shown to be NP-complete if h is part of the input as the problems of minimum threshold completion, weighted 2-threshold partition and weighted 2-threshold covering. We also prove that the k-cyclic scheduling problem is NP-complete for all fixed k, a result used to show that deciding whether a threshold r-hypergraph contains a Hamiltonian cycle is NP-complete.
引用
收藏
页码:299 / 308
页数:10
相关论文
共 10 条
[1]  
Chvatal V., 1977, STUDIES INTEGER PROG, V1, P145
[2]  
GAREY M, 1979, COMPUTRS INTRACTABIL
[3]  
Hammer P. L., 1981, Studies on graphs and discrete programming, P125
[4]   HAMILTONIAN THRESHOLD GRAPHS [J].
HARARY, F ;
PELED, U .
DISCRETE APPLIED MATHEMATICS, 1987, 16 (01) :11-15
[5]  
Ibaraki T., 1981, Studies on graphs and discrete programming, P241
[6]   CYCLIC SCHEDULING OF OFF-WEEKENDS [J].
KOOP, GJ .
OPERATIONS RESEARCH LETTERS, 1986, 4 (06) :259-263
[7]   THRESHOLD HYPERGRAPHS [J].
REITERMAN, J ;
RODL, V ;
SINAJOVA, E ;
TUMA, M .
DISCRETE MATHEMATICS, 1985, 54 (02) :193-200
[8]  
TROYON M, 1990, COMMUNICATION
[9]  
WOGINGER G, 1990, COMMUNICATION
[10]   THE COMPLEXITY OF THE PARTIAL ORDER DIMENSION PROBLEM [J].
YANNAKAKIS, M .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :351-358