ON THE LIE SYMMETRIES OF THE CLASSICAL KEPLER-PROBLEM

被引:84
作者
PRINCE, GE
ELIEZER, CJ
机构
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1981年 / 14卷 / 03期
关键词
D O I
10.1088/0305-4470/14/3/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:587 / 596
页数:10
相关论文
共 16 条
[1]   GENERALIZATION OF LIES COUNTING THEOREM FOR SECOND-ORDER ORDINARY DIFFERENTIAL EQUATIONS [J].
ANDERSON, RL ;
DAVISON, SM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 48 (01) :301-315
[2]  
Bluman G.W., 1974, SIMILARITY METHODS D
[3]  
COHEN A, 1911, INTRO LIE THEORY 1 P
[4]  
COLLINSON CD, 1973, B I MATH APPL, V9, P377
[5]   Differential equations from the group standpoint. [J].
Dickson, LE .
ANNALS OF MATHEMATICS, 1924, 25 :287-378
[6]   NOTES ON SYMMETRIES OF SYSTEMS OF DIFFERENTIAL-EQUATIONS [J].
GONZALEZGASCON, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (09) :1763-1767
[7]   HAMILTON PRINCIPLE AND THE CONSERVATION THEOREMS OF MATHEMATICAL PHYSICS [J].
HILL, EL .
REVIEWS OF MODERN PHYSICS, 1951, 23 (03) :253-260
[8]  
IKEDA M, 1970, MATH JPN, V15, P57
[9]   CONSERVATION LAWS FOR GAUGE-VARIANT LAGRANGIANS IN CLASSICAL MECHANICS [J].
LEVYLEBLOND, JM .
AMERICAN JOURNAL OF PHYSICS, 1971, 39 (05) :502-+
[10]  
Lie S., 1891, VORLESUNGEN DIFFEREN